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A B S T R A C T   

Watersheds play a critical role in supplying water resources needed for human use and ecosystem health. Un
derstanding and predicting how, when, and where changes in the quantity and quality of water resources occur 
under different environmental stresses including extreme events is crucial for sustainable management of water 
resources under a changing environment. However, few studies have attempted to quantify or identify the factors 
and process interactions controlling the impact of extreme events across watershed systems. Only few large-scale 
studies include coordinated monitoring and modeling efforts, which limits our ability to assess the large-scale 
impact of extreme events on water supply and quality. Methods are lacking to propagate uncertainty in pro
cess understanding through an integrated hydro-biogeochemical model framework and evaluate its importance, 
thus failing to take full advantage of the information potentially available through transformative advances in 
characterization technologies from high-resolution mass spectrometry to airborne and satellite-based remote 
sensing. There are consequent risks to our nation’s water security and to human and ecosystem health that may 
become exacerbated with the increasing frequency of extreme events that is projected for the coming decades. 
This paper reviews the current status of watershed science for both water quantity and quality and identifies 
critical gaps in our current knowledge and modeling capability in addressing the emergent needs in predicting 
watershed hydrologic and biogeochemical responses (i.e., water quantity and quality) under natural and 
anthropogenic perturbations. We highlight the need to (1) understand how environmental perturbations 
including extreme events like floods and droughts and anthropogenic changes such as deforestation and ur
banization propagate through watershed systems and assess their short- and long-term impacts on watershed 
biogeochemistry, water quality and their recovery pathways; (2) develop and improve a watershed water quality 
model that reflects the state of scientific understanding gained from observations; and (3) construct a data-model 
fusion system for watershed characterization, process identification, and mechanistic model parameterization. A 
large base of modeling, monitoring and data capabilities have been built by various federal government agencies 
given the relevance of water to their critical missions. An emerging need is to build an integrated national 
capability for watershed water availability and quality that can address water-related missions across multiple 
federal agencies.   

1. Introduction 

Watersheds are the key functional units for water resources man
agement. Hydrological processes in watersheds mediate biogeochemical 

cycling of carbon, nutrients, and metals; vegetation growth; and fate and 
transport of contaminants, all of which can affect water quality. A 
schematic in Fig. 1 illustrates some key components to conceptualize the 
hydrologic and biogeochemical processes within a complex watershed. 
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We define watershed function as the response of a watershed to the 
water entering its control volume (Wagener et al., 2007). Typically, 
watershed functions involve (a) partitioning of accumulated water into 
separate flowpaths such as infiltration, percolation, runoff, and inter
ception; (b) storing water in different sub-compartments such as snow, 
soil moisture; (c) releasing water through evapotranspiration and sur
face water-groundwater interactions (Sivapalan, 2005; Wagener et al., 
2007). Apart from these, watersheds also perform an essential function 
of retaining and releasing nutrients, metals, and contaminants, which 
determines river water quality downstream (Hubbard et al., 2018). In 
general, coupled transport of water and dissolved substances (e.g., nu
trients, organic matter, and contaminants) from different locations in 
the watershed controls hydro-biogeochemical reaction rates and 
consequently impacts downstream water quantity and quality (Kirchner, 
2006). Understanding and predicting how, when, and where changes in 
the quantity and quality of water resources occur requires deep insight 
into the physical and biological mechanisms that govern the cycling and 
transport of water and elements across watersheds under a wide spec
trum of environmental stresses (Laudon and Sponseller, 2018). Gaining 
such insight requires field-based information that resolves how water 
moves across landscapes, its residence time, and what the biogeo
chemical properties are along various flow paths. Long-term monitoring 
efforts should be tightly coupled with process-based models that span 
the disciplinary boundaries of hydrology, geochemistry, microbiology, 
ecology, and atmospheric sciences (Bao et al., 2017; Seibert and 
McDonnell, 2002), to pursue causation, identify when and where the 
hydrological and biogeochemical processes are most sensitive to envi
ronmental changes at various severities (Laudon and Sponseller, 2018; 
Murdoch et al., 2014), account for uncertainty ranges (Fatichi et al., 
2016), and get “the right answers for the right reasons” (Kirchner, 
2006). 

Watershed science has advanced significantly over the last 50 years, 
leveraging both high-resolution spatial and temporal data obtained 

using surface and subsurface sensors and remote sensing, availability of 
high performance computing resources including simulation codes, and 
the emerging statistical methods for integrating modeling and obser
vations to extract knowledge in advancing predictive understanding 
(Kirchner, 2006; Wagener et al., 2007; Kirchner et al., 2004; Hubbard 
et al., 2018; Gooseff et al., 2007; Beven, 2006; Bear, 2013). Such efforts 
have furthered our understanding of watershed function by linking 
climate, hydrology, ecology, biogeochemistry, and biodiversity (Gra
ham et al., 2019). 

Despite these advances, climate change, extreme weather, anthro
pogenic activities (e.g., agriculture, energy production, land-use change, 
and contaminant exposure), and other perturbations lead to huge un
certainties regarding how watersheds respond to such perturbations 
(Page et al., 2012). For instance, climate change has not only shifted 
average meteorological conditions but also led to an increased number 
of extreme events, illustrated by the recent examples of Hurricane 
Katrina, Hurricane Irene, Tropical Storm Lee, and Hurricane Harvey, all 
of which resulted in record-breaking rainfall totals and billions of dollars 
in loss and damages (Vidon et al., 2018; Paerl et al., 2018). Watershed 
responses to environmental changes may vary depending on the in
tensity, duration, and magnitude of an event (Kaushal et al., 2018b). 
High-intensity events, such as tropical cyclones, usually lead to pulse 
responses in water quality, with large changes in chemical concentra
tions and fluxes occurring over relatively large areas and over short time 
periods. For example, Hurricane Irene and Tropical Storm Lee led to 
unprecedented increases in the concentrations and loads of total sus
pended solids (TSS), particulate organic carbon (POC), and dissolved 
organic carbon (DOC) as they moved through Maryland and Pennsyl
vania (Vidon et al., 2018). Ten-fold increases in DOC and hundred-fold 
increases in POC were observed in Maryland; hundred-fold increases in 
TSS concentrations occurred in Pennsylvania. High runoff induced by 
tropical cyclones had large impacts on annual N and phosphorus (P) 
fluxes and mobilized and transported terrestrial-derived C to estuaries. 

Fig. 1. Conceptual model of hydrologic and biogeochemical processes at the watershed scale.  
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Particulate loads (e.g., POC, particulate phosphorous, TSS) occurring 
during Irene and Lee accounted for more than 30% of the annual 
discharge concentration in many places (Paerl et al., 2018). Anthropo
genic activities such as fertilizer applications, deforestation, urbaniza
tion and dam construction can exacerbate extreme responses and 
feedback. For example, deforestation significantly enhances runoff with 
associated increases in sediment, nutrient, and organic matter loadings 
(Heaney and Huber, 1984; Hawley and Vietz, 2016; Paul and Meyer, 
2001). Impervious surfaces in urbanized areas limit groundwater 
recharge and direct stormwater into defined flowpaths that support 
flashier hydrograph responses to storms, facilitate erosion, and carry 
pollutants that impact stream biota and broader ecosystem health 
(Walsh et al., 2005; Walsh et al., 2007; Burns et al., 2012; Herlihy et al., 
1998; Grimm et al., 2005; Kaye et al., 2006; Tsoi et al., 2011; Fletcher 
et al., 2013). 

Improving the understanding of how extreme events impact water
sheds has become increasingly more critical as the occurrence of these 
extreme events are projected to be more frequent and more intense 
(IPCC, 2012). Watershed models are key tools for understanding 
watershed functions and their responses to perturbations, and thereby 
for managing water resources (Weiler and McDonnell, 2004; Burt and 
Pinay, 2005; Beven, 1997; Jones et al., 1993). Mechanisms that well 
represent watershed hydro-biogeochemical responses to mild environ
mental stresses may not be extrapolated to represent responses to 
extreme events such as floods and droughts. Furthermore, the spectrum 
of environmental stresses that have been modeled is data sparse, espe
cially with respect to extreme events. High variability in the relatively 
few end member observations, against which models are calibrated, 
results in high uncertainty in model conceptualization, which is ulti
mately translated into model structural error. Decreasing model struc
tural uncertainty would better inform sustainable management of 
watershed systems under projected environmental stresses, which are 
critical for enhancing our economical and societal resilience (Srinivasan 
et al., 2017; McDonnell et al., 2018). 

The objectives of this review paper are to: (1) review the current 
status of watershed modeling and monitoring in understanding water
shed hydro-biogeochemical processes and predicting water quantity and 
quality under perturbations; (2) identify the key knowledge and capa
bility gaps; and (3) present a path forward to integrate modeling and 
observations to advance predictive understanding of watershed hydro- 
biogeochemical responses to perturbations. 

2. Current knowledge and gaps in understanding watershed 
responses 

The response of water quality to extreme hydrologic events in a 
watershed is shaped by geology, topography, land use, and past envi
ronmental conditions (Kaushal et al., 2018a; Kaushal et al., 2018b). 
Interactions of hydrologic and biogeochemical processes in watersheds 
are inherently complex (Fig. 1). They are manifested over a variety of 
temporal scales and spatial scales from single microorganism to indi
vidual plants to landscape (Wang et al., 2015). Coupled hydrologic 
processes include precipitation, overland flow, evapotranspiration, 
variably saturated flow, and the movement and exchange of between the 
land surface, soil, and the underlying aquifers (Yu et al., 2018). Coupled 
biogeochemical processes include mineral weathering, cation exchange, 
photosynthesis, nutrient cycling within each hydrological compart
ments, sediment erosion, as well as transformation and exchange be
tween those compartments. Understanding watershed biogeochemistry 
that controls key water quality signatures at broad spatial scales must 
account for not only how processes in different landscape patches (e.g., 
in upland, riparian zone, and wetlands) are regulated, but also how they 
interact as water travels across the watershed. Transport processes must 
be coupled with element-specific cycling across space and time to un
derstand the contributions of landscape patchiness and hydrologic and 
biogeochemical connectivity (the connection and disconnection of 

disparate landscapes via surface and subsurface flows) in controlling 
stream and river water chemistry (Harvey and Gooseff, 2015). Research 
has just begun to connect transport mechanisms with element-specific 
releases to surface water (Bao et al., 2017; Kaushal et al., 2018a). 

2.1. Watershed hydro-biogeochemical processes 

The depth and length of groundwater flow paths strongly control C 
and N cycling and the delivery of below-ground biogeochemical reaction 
products to surface water (McDonnell et al., 2007). High DOC exports 
have typically been associated with near-surface hydrologic flow paths 
that intersect DOC rich forest floor and surficial soil layers in riparian or 
wetland locations (Frank et al., 2000; Inamdar and Mitchell, 2006). 
Rising groundwater tables also contribute to increased DOC concentra
tions in surface waters, known as the “flushing” effect (Creed et al., 
2008). Nitrate (NO3− ) exports from watersheds occur along both 
shallow and deep groundwater flow paths (Laudon and Sponseller, 
2018; Inamdar and Mitchell, 2006; McGlynn and McDonnell, 2003). 
These flowpaths are impacted by land use changes, such as urbanization 
which limits groundwater recharge (Brown et al., 2009). Therefore, 
understanding the subsurface routing of water through a watershed is 
fundamental for explaining hydro-biogeochemical responses in surface 
water. However, the role of subsurface biogeochemistry in watershed 
responses to extreme events and chronic changes remains poorly 
understood. 

Subsurface flow depends on precipitation thresholds. In one example 
(Tromp-van Meerveld and McDonnell, 2006a), it was shown that pre
cipitation events exceeding the threshold of 55 mm resulted in a 
hundred-fold increase in subsurface flow compared to subsurface flow 
changes that resulted from storms producing less than 55 mm of pre
cipitation. Storm flow can be partitioned as moving slower through 
capillaries in the soil matrix or (generally) faster through preferential 
pathways. Traditionally, such preferential pathways were conceptual
ized as conduit macropore networks in the soil matrix that re-route 
water to arrive at the stream at rapid speeds (Beven and Germann, 
1982). Preferential flows also occur at the interface between shallow 
surface soil and an impervious layer (e.g., bedrock; Freer et al., 2002; 
Graham et al., 2010; Hopp and McDonnell, 2009; Lehmann et al., 2007; 
McGlynn and McDonnell, 2003; Salve et al., 2012; Tani, 1997; Tromp- 
van Meerveld and McDonnell, 2006b). Soil pores and micro
topography of the bottom impervious layer are hypothesized to fill, then 
water can spill over the bottom boundary layers and initiate preferential 
flow with a threshold response (Tromp-van Meerveld and McDonnell, 
2006b). More recent studies have also shown that preferential flow 
paths through weathered and fractured bedrock may contribute signif
icantly to watershed water balance (e.g., accounting for more than 30% 
of precipitation) (Kosugi et al., 2006; Graham et al., 2010; Aishlin and 
McNamara, 2011; Flinchum et al., 2018; Tromp-van Meerveld et al., 
2007). Preferential subsurface flow influences the source, age, and 
timing of water, C, and N losses in many systems, with important im
plications to biogeochemical reactions, residence time, and routing to 
downstream ecosystems (Lohse et al., 2009). Changes in precipitation 
extremes will likely alter runoff pathways and groundwater recharge, 
which may in turn increase nitrate and DOC concentrations in both 
groundwater and other receiving waters. These impacts are likely to 
differ in areas experiencing anthropogenic alterations to landscapes that 
increase susceptibility to precipitation events (Walsh et al., 2005; Burns 
et al., 2012). However, it is extremely challenging to mechanistically 
capture such preferential flows across watersheds because there are few 
observations of such flow responses during extreme storm events, and 
subsurface domains, especially bedrock fractures, are not easily acces
sible. While isotopic signature and long-term mass balance experiments 
could provide valuable information for the mixture of flow paths, resi
dence time, and contributions from various land use patterns, such 
measurements have not been acquired in many watersheds. 

Plant canopy interception and root access to subsurface water for 
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transpiration can also impact the water balance by altering the soil 
storage of water and material, consequently on water and solute avail
ability including location and timing across the landscape (Brauman, 
2015). Under drought or water-limited conditions, plants modulate the 
transpiration demands by controlling the opening of their stomata to 
avoid catastrophic failure. Empirically-derived wilting parameters are 
crucial in connecting soil water conditions to plant transpiration (Fang 
et al., 2017; Chen et al., 2008). Eddy covariance flux tower measure
ments (Baldocchi et al., 2001) provide valuable datasets to identify the 
connections between the ecohydrologic fluxes and their driving forces 
and understand the feedback mechanisms between processes. An in
formation theory-based approach (Goodwell et al., 2018) has been 
recently applied to understand how forcing and feedback mechanisms 
are linked to ecosystem responses (water, carbon, and heat fluxes at the 
land surface) to different types of disturbances (e.g., rainfall pulses and 
drought) using process connectivity between environmental variables. 
Based on analyses performed on two transects of eddy covariance towers 
across elevation and climatic gradients at the Critical Zone Observa
tories (CZOs) in Idaho and California, Goodwell et al. (2018) found that 
ecohydrologic fluxes along climate gradients respond differently to 
disturbances, with significant influence of heterogeneity in soil char
acteristics, topography, vegetation, and soil microbial activity. Ac
counting for deep groundwater dependence of ecosystems under water 
stress is especially important for managing dryland ecosystems to ach
ieve water resources sustainability (McDonnell et al., 2018; Miller et al., 
2010). 

Knowledge of unprocessed atmospheric nitrate in waters is impor
tant to assess forest health and water quality in watersheds. A recent 
synthesis (Sebestyen et al., 2019) of nitrate isotope studies around the 
Northern Forest Region revealed that nitrate enters the forests from 
atmospheric deposition and sometimes rapidly moves to streams 
without being biologically processed. Especially during higher-flow 
events caused by either rainfall or snowmelt runoff, unexpectedly high 
levels of unprocessed nitrate flows to streams could occur over a brief 
time window. Too much nitrogen, termed “nitrogen saturation,” can 
change forest composition and mobilize calcium in soil, leading to 
declining forest health and water quality. The effect of nitrogen satu
ration could be amplified if extreme precipitation events continue to 
increase in frequency and magnitude. Understanding the fate of nitrogen 
produced in the air and transported to the land and river networks is 
currently lacking due to lack of long-term monitoring of nitrate isotopes 
(Schlesinger, 2009). 

Hydrologic flow paths and runoff sources are critical for explaining 
the differences in dissolved organic matter (DOM). The concentration, 
composition, and sources of DOM were found to differ dramatically 
between base flow and storm event conditions during a three-year 
period (2008–2010) in a forested headwater catchment in the mid- 
Atlantic Piedmont region of the US (Inamdar et al., 2011). The aro
matic and humic DOM constituents in river water increased significantly 
during storm events, attributed to the contributions from surficial 
sources such as throughfall, litter leachate, and soil water. Groundwater 
sources contributed a large fraction of the DOM constituents during base 
flow and were responsible for the high percentage of protein-like fluo
rescence observed in base flow conditions. By studying multiple storm 
events, this same study (Inamdar et al., 2011) also revealed that summer 
storm events produced the highest concentrations of humic and aro
matic DOM, while such response was muted for winter storms. A large 
precipitation event following summer drought produced a complex 
DOM response; this was not observed for other similar storm events, 
confirming the dependence of response on past environmental condi
tions. Deforestation and urbanization also increase DOM loading to 
waterways, often with different chemical character than surface water 
DOM profiles (Williams et al., 2010; Wilson and Xenopoulos, 2009; Fu 
et al., 2007; McEnroe et al., 2013), and amplify the impacts of precipi
tation events through enhanced erosion and preferential flowpaths 
(Burns et al., 2012; Heaney and Huber, 1984; Paul and Meyer, 2001; 

Hawley and Vietz, 2016). 
The composition of DOM has a large impact on the watershed 

biogeochemical processes, as revealed in recent studies (Stegen et al., 
2018; Goldman et al., 2017; Graham et al., 2017; Graham et al., 2018). 
Laboratory experiments and field observations have revealed that mi
crobial activities and organic carbon (OC) characteristics regulate the 
underlying mechanisms of biogeochemical cycling in surface water and 
subsurface systems, such as aerobic respiration and denitrification 
(Stegen et al., 2018; Goldman et al., 2017; Graham et al., 2017; Graham 
et al., 2018). Understanding of the input and fate of DOM in river net
works has undergone dramatic transformation over the past decade with 
the availability of new measurement technologies such as high- 
resolution mass spectrometry. Challenges exist in translating informa
tion about the relative composition of different DOM components to 
masses to enable a better understanding of (1) the coupling between 
DOM composition and microbial uptake and nutrient cycling, and (2) 
the role of DOM at the watershed level (Inamdar et al., 2011). These 
challenges result in conceptual uncertainty in translating the knowledge 
into model representations. Methods are lacking to propagate that 
conceptual uncertainty through an integrated hydro-biogeochemical 
model framework and evaluate its importance, thus failing to take full 
advantage of the information potentially available through these 
transformative advances in characterizing molecular properties. 

2.2. River corridor hydrology and biogeochemistry 

Hydrologic exchanges between the surface water and groundwater 
creates hydrological, thermal, biological, and chemical gradients across 
the interface of these two water bodies, which have significant impact 
on human and environment health (Bobba, 2012; Conant et al., 2019). 
The interaction zone, broadly defined as the river corridor (Harvey and 
Gooseff, 2015), experiences bidirectional exchange of water, energy and 
nutrient driven by static and dynamic pressure variations over the 
streambed (Grant et al., 2018). However, quantifying the exchange of 
water and chemicals of interest across this interface at watershed scale is 
hampered by limited data availability and integrated models that are not 
sufficiently refined to account for heterogeneities in the stream channels 
and aquifers (Barthel and Banzhaf, 2016). As of today, the study of river 
corridor processes still faces the challenges identified in Harvey and 
Gooseff, 2015 five years ago: 1) how to transfer small scale process 
knowledge to larger scale water quality and ecological response that are 
cumulatively affected by these small processes; 2) how to resolve the 
effect of heterogeneities of multiple origins on hydrologic exchange 
flows and fate of nutrients and contaminants in rivers; 3) how to un
derstand river corridor functions by quantifying “hot spots and hot 
moments” and reactant delivery effectiveness by hydrologic exchange 
flows for biogeochemical processing of nutrients and organic matter; 
and 4) how to avoid potential measurement bias of hydrologic exchange 
fluxes. These challenges have recently been reiterated in a review paper 
by Ward and Packman, 2019. For an improved understanding of 
biogeochemical transformation processes across this interface, high 
resolution monitoring is essential to determine the spatial and temporal 
variability of hydro-biogeochemical parameters (Gassen et al., 2017). 
On the other hand, hydrologic connectivity cannot be ignored when 
addressing watershed scale water quantity and quality (Freeman et al., 
2007; Harvey et al., 2019). Low-frequency large precipitation and snow 
events under future climate change can contribute to a significant pro
portion of annual terrestrial dissolved organic matter input to drainage 
networks and to downstream, higher-order rivers, bypassing headwater 
streams due to higher stream velocities during these events (Raymond 
et al., 2016). 

2.3. Linking with microbial and biogeochemcial processes 

While it is often assumed that high resolution data generated by 
emerging molecular techniques can improve our understanding and 
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predictions of biogeochemical cycling (Rocca et al., 2015; Graham et al., 
2016; Hall et al., 2018), we have a poor understanding of the environ
mental contexts as well as the spatial and temporal scales at which these 
data types truly provide added value for predictive power of watershed 
function. Recent meta-analyses have demonstrated weak relationships 
between microbial genes and biogeochemical processes, highlighting a 
falsehood in the common assumption that molecular data is spatially 
and temporally representative of broader ecosystem function (Rocca 
et al., 2015; Graham et al., 2016). Molecular information is typically 
extracted from a gram or less of sediment at sparse (or a single) time 
points and detect both active and residual constituents. In contrast, 
watershed functions of interest are over much larger spatial domains at 
daily or even finer resolution when evaluating rapid responses to 
intensive hydrologic disturbances. Therefore, questions remain 
regarding the spatial scales and domains at which molecular informa
tion is valuable for informing reactive transport processes at the 
watershed scale, and how the importance of molecular data varies over 
time when the perturbation progresses. For instance, Graham et al. 
(2014) demonstrated seasonal disparities in the power of microbiome 
genes to explain N cycling rates, and Blinn et al. (1995) demonstrated 
that benthic organisms can require four months of recovery time 
following subsequent 12-h disturbances. In such a situation, genetic 
information on microbial communities may provide significant insight 
into biogeochemical reaction rates. Good et al. (2018) have shown the 
utility of a genohydrology approach at monthly or longer timescales. 

High resolution molecular data may be most useful for improving 
predictive models in systems with high spatiotemporal variability, 
wherein microorganisms integrate over the short-term hydrologic his
tory of the system (days to weeks) and metabolomic data reflect 
biogeochemical processing in real-time. Examples of such situations 
include hyporheic zones, perturbation responses, and high-frequency 
stage variability (e.g., hydropeaking, coastal, storm-driven). Hypo
rheic zones are a nexus of hydrologic mixing and biogeochemical hot 
spots, with spatiotemporal variability in chemical constituents (Boulton 
et al., 1998; McClain et al., 2003; Harvey and Gooseff, 2015). Height
ened heterogeneity in this zone can generate disconnects between mi
crobial metabolism and ambient geochemistry, therefore deviating true 
biogeochemical rates from functional predictions that are based solely 
on hydrobiogeochemical data types. Perturbations may similarly 
decouple extant microbiomes from environmental conditions, therefore 
increasing the value of molecular insights on predictions of biogeo
chemical rates during perturbation. High-frequency stage variations can 
alter the spatial extent and mixing conditions of hyporheic zones as well 
as perturb multiple components of watersheds (Song et al., 2018; Shuai 
et al., 2019), creating an ideal system for maximal value in molecular 
data. 

2.4. Watershed Functions under Mild and Extreme Perturbations 

Interpretations of watershed modeling studies under mild and 
extreme perturbation forcing remain uncertain for several reasons. First, 
water quality responses to observed perturbations vary depending on 
the intensity, duration, and magnitude of an event. Various numerical 
modeling approaches simulate well the hydro-biogeochemical responses 
to most events in the subsurface and surface water domains, though 
simulations of responses to extreme events continue to contain high 
uncertainty due to the chaotic nature of large-scale atmospheric circu
lation (Shepherd, 2014). A study of 35 tropical cyclones over the past 
two decades found that watershed export of nutrients and carbon after 
major storms can be storm-specific, depending on the mechanisms that 
mobilize the nutrients and carbon (Paerl et al., 2018). For P, large storm 
flows may lead to its release from sediment in inundated wetlands that 
experience low-oxygen river water conditions that often occur after the 
passage of tropical cyclones. P concentrations increased as flow 
increased, which magnified the total impact of the storm. However, N 
concentrations had a non-monotonic and generally negative 

relationship with flow, suggesting non-point sources from unique land 
use were dominant, while dissolved and particulate organic nitrogen did 
not correlate significantly with flow (Paerl et al., 2018). Second, there 
are difficulties in obtaining field observations and doing process-based 
studies. Currently, watershed models under extreme perturbation forc
ing have been data sparse due to difficulties in obtaining field obser
vations and performing process-based studies (Kaushal et al., 2018b; 
Vidon et al., 2018). Models calibrated against few end member obser
vations may lead to large uncertainty. Some particular extreme events 
have been well-documented, though not all systems (e.g., riparian 
zones) in the watershed are well represented (Vidon et al., 2018). Third, 
there is uncertainty about future anthropogenic disturbance to the 
environment and how that impacts watershed hydro-biogeochemical 
processes. Nutrient and carbon flushing is largely dependent on previ
ous accumulation, due in large part to changing land use (Paerl et al., 
2018). Models show that flood magnitudes can decrease significantly in 
large rivers downstream of dams (Lu et al., 2017), impacting nutrient 
and carbon loads downstream. The capacity for stream and river eco
systems to retain and transform nutrient pollution from landscapes can 
become “saturated” during floods unless nutrient pollution sources are 
reduced at the watershed scale (Kaushal et al., 2018b). Fourth, there is a 
lack of a consistent strategy in terms of monitoring methods to fully 
assess the large-scale impact of extreme events (Vidon et al., 2018). 

Climate change has increased the frequency and intensity of fires, 
which alter the watershed hydrobiogeochemical functions by reducing 
vegetation cover, and soil hydraulic/biogechemical conditions. Forest 
fire increases the surface flow rather than groundwater flow, resulting in 
higher stream temperature (Wagner et al., 2014) and increased nutrient 
exports to streams (Hanan et al., 2017). Also, increased solar radiance on 
the soil surface due to lower vegetation coverage may accelerate the 
decomposition of soil organic matters (Wagner et al., 2014). Post-fire 
precipitation increased hillslope/channel erosion and its rapid 
geomorphic change can alter the stream metabolism (Tuckett and 
Koetsier, 2016). However, the impact of forest fire can vary among 
different watersheds (Oda et al., 2018); for example, some watersheds 
with higher interaction between surface and groundwater tend to have 
less significant fire effect on stream temperature than the watersheds 
with lower surface–groundwater interaction (Wagner et al., 2014). 
Furthermore, vegetation in higher elevation area (energy-limited 
watershed) tend to take longer time to recover from fires, which could 
prolong the periods of impaired water quality as impacted by the fire 
(Wagner et al., 2014). 

Anthropogenic activities such as land cover change (e.g.deforesta
tion), and urbanization alter hydrologic fluxes and water qualities. 
Expanded agriculture lands play a major role of contaminating 
groundwater and stream water qualities through the intensive use of 
inputs such as pesticides, chemical fertilizers and manures of livestock, 
etc. In agriculture-dominated watersheds, subsurface flow via tile 
drainage and homogeneity of evaportranspriation by mono-cultural 
vegetation cover reduce the hydrologic variability. Urbanization in
creases the population density, consequently increasing the nutrient 
loads including waste water discharge. The urbanization increases the 
intensity and the frequency of flooding as the hydrologic response to 
precipitation is faster due to increased impervious area. 

3. Watershed monitoring 

Hydrologic and biogeochemical monitoring of watersheds is broadly 
dispersed across agencies and individual research teams. While an 
exhaustive review of all efforts across the globe is beyond the scope of 
this paper, we provide a summary of major infrastructure within the US 
with the goal of emphasizing strengths and weaknesses of current ef
forts. For example, the U.S. Geological Services (USGS) has developed 
and maintains an expansive monitoring network ( https://waterdata.us 
gs.gov/nwis) focused on surface water quantity and quality using in situ 
sensors (e.g., stream gauges, water quality sondes) and field-collected 
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samples. A key attribute of the USGS network is that much of the data is 
freely available and is consistently structured and managed. This allows 
the USGS data to be used extensively for operational decision making, 
flood prediction/response, and basic research into watershed function. 
The USGS network is, however, biased towards larger rivers and the 
network is primarily above the head-of-tide. As such, there are gaps in 
the monitoring of low-order streams and tidal rivers. USGS has also 
established the National Ground-Water Monitoring Network (NGWMN) 
( https://cida.usgs.gov/ngwmn/index.jsp), which provides monitoring 
data from groundwater wells distributed across federal, state, and local 
agencies. 

Recognizing a need for consistent monitoring data across environ
mental contexts, the U.S. National Science Foundation (NSF) has 
established the National Ecological Observatory Network (NEON) ( 
https://www.neonscience.org/) as an observational platform across all 
biomes of the US. Similar to USGS, NEON data are consistently gener
ated and structured, and are freely available. NEON includes both 
terrestrial and aquatic components, and their data span everything from 
ecosystem fluxes to soil microbes to plant/animal communities to 
stream discharge. The use of consistent methods to generate and openly 
provide data are not unique to the USGS and NEON, but they are also not 
necessarily common across other monitoring efforts. It is important to 
recognize that NEON was not established to monitor watersheds per se, 
but rather to monitor terrestrial and aquatic environments in localized 
field sites distributed across biomes of the US. NSF funds other major 
field efforts as well, such as the long term ecological research (LTER) 
network, which includes elements of ecosystem monitoring and exper
imentation. Like NEON, the LTER network is not necessarily focused on 
watershed monitoring. Other efforts funded by the NSF are more 
watershed-oriented, in particular the CZO network ( http://criticalzone. 
org/national/) that spans a number of watersheds across the US. Efforts 
within CZO sites span a broad range of watershed attributes, though 
they often emphasize the geology and geochemistry of the deep sub
surface. The NSF-funded CUASHI effort ( https://www.cuahsi.org/) is 
another critical capability within watershed science. CUASHI is a con
sortium of universities that serves integrated watershed data (e.g., water 
discharge and quality) and provides access to models (e.g., the national 
water model) and training in watershed science methods. 

In addition to the USGS and NSF, The US Environmental Protection 
Agency (EPA) has significant monitoring efforts, such as their National 
Streams and River Assessment ( https://www.epa.gov/national- 
aquatic-resource-surveys/nrsa) that focuses on the ecological state and 
water quality of streams and rivers within the US. The EPA efforts have 
less emphasis, however, on watershed hydro-biogeochemistry. The US 
Department of Energy (DOE) funds a network of 5 watershed test beds 
distributed across the contiguous US. They collectively span much of the 
watershed continuum from low-order headwater streams in Colorado, to 
mid-order streams Tennessee, Wyoming, and Georgia, to a high-order 
river in Washington State. Research within these test beds is highly 
integrative that includes both monitoring and experimentation associ
ated with surface and subsurface hydrology, (bio) geochemistry, 
microbiology, plant physiology, and ecosystem processes. In addition, 
data-generating efforts in these test beds often focused on informing 
mechanistic hydrobiogeochemical numerical models, such as subsurface 
reactive transport codes. Among agency-funded efforts, the DOE test 
beds are relatively unique in their level of focus on informing predictive 
models, which contrasts with other efforts (e.g., NEON) designed pri
marily as observatories with less emphasis on informing models. 

Similar monitoring strategy and efforts exist across the globe to un
derstand watershed functions. For example, Canada’s Water Office 
provides real-time, nation-wide stream gauge data ( https://wateroffice. 
ec.gc.ca/). Canada has also formed a watershed research consortium ( 
http://cwn-rce.ca/project/canadian-watershed-research-consortium/) 
that aimed to develop consistent monitoring programs across water
sheds to enable improved understanding and decision making. Recently, 
more community-driven networks are emerging, such as StreamPulse ( 

http://pulseofstreams.weebly.com/) that includes hundreds of datasets 
from across watersheds to evaluate stream metabolism. The ‘internet of 
water’ ( https://internetofwater.org/) that focuses on improving access 
to watershed data by linking data producers (e.g., USGS), data hubs (e. 
g., NGWMN), and data users (e.g., researchers and decision makers). 
Worldwide Hydrobiogeochemistry Observation Network for Dynamic 
River Systems (WHONDRS) ( https://whondrs.pnnl.gov/) is another 
network initiated by the watershed science community to provide 
unique data resources with detailed molecular characterization, 
focusing in the river corridors impacted by dam operations. 

Enhanced coordination and standardization in terms of data gener
ating methods and data archive practices is a major need within 
watershed science. The USGS and similar efforts in Canada and other 
countries provide a model of coordination, consistency, and openness 
that all of watershed science should aspire to. 

4. Watershed modeling approaches 

Watershed models can be broadly thought of as being either empir
ical (data-driven) or process-based (mechanistic), although in practice 
many models employ a combination of the two approaches. Empirical 
models link inputs (e.g., geomorphic properties, land use, precipitation) 
and outputs (response/state of a watershed) through observationally- 
derived relationships. Because such models do not attempt to explic
itly quantify the underlying physical, chemical and biological processes 
that connect inputs with outputs, they usually require a small numbers 
of parameters and are computationally inexpensive to implement. Some 
examples of empirical models include the unit hydrograph and curve 
number method (USDA, 1986) used to estimate runoff, and the Uni
versal Soil Loss Equation (Hudson and Food, 1993) used to estimate soil 
erosion. Machine learning (ML)-based relationships are a form of 
empirical model, typically derived solely through analysis of large 
datasets without imposing physical constraints, and methods such as 
Artificial and Bayesian Neural Networks (Committee, 2000; Dawson and 
Wilby, 2001; Dawson and Wilby, 1998; Dwivedi et al., 2013) are 
increasingly being used to simulate hydrologic processes. Empirical 
models can be useful in ungauged watersheds, but they are valid only 
under conditions (i.e., high-level watershed characteristics) similar to 
those under which they were derived. Thus care must be exercised to 
ensure empirical models are not used outside their range of applica
bility. This may strongly limit their suitability for predicting responses to 
extreme events, which by definition are outside the range of “normal” 
events on which empirical relationships are based on and may also lead 
to fundamental changes in hydrologic connectivity and other features 
that control watershed responses. 

Process-based models attempt to impose physical, biological, and 
chemical principles (e.g, conservation laws or laws of mass action) on 
the mathematical formulae relating model outputs to inputs (often using 
ordinary or partial differential equations). In practice it is not possible to 
resolve processes based on first principles alone. Closure approximations 
must be introduced (Wood, 2009), usually resulting in effective pa
rameters or constitutive relationships that must be inferred from 
observational data, thus blurring the line between process-based and 
empirical models. Ubiquitous spatial heterogeneity in watershed pro
cesses commonly renders such parameters spatially variable and scale- 
dependent. Among process-based models, so-called lumped models use 
simplified governing equations without explicitly accounting for spatial 
variability in inputs and parameters. Examples include Stanford 
Watershed Model IV (SWM) (Crawford and Linsley, 1966), TOPography 
based hydrological MODEL (TOPMODEL) (Beven, 1997), Hydrologiska 
at Vattenbalansavdelning model (HBV) (Bergstrom, 1976), Hydrological 
Simulation Program FORTRAN (HSPF) (Bicknell et al., 1996; Duda et al., 
2012). These models are easy to use and calibrate, computationally 
inexpensive, and most codes are open source. However, lumped 
watershed models can only simulate aggregated behaviors of a water
shed system, for instance, the streamflow response at the watershed 
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outlet. Lumped models require long-term monitoring data for calibra
tion, and their heavy reliance on calibration limits their applicability to 
extreme events that fall outside the range of historical observations. 

Unlike the lumped models, process-based distributed models attempt 
to capture the spatial heterogeneity of system responses by using 
spatially-distributed parameters and inputs, while the set of governing 
laws/equations remain same for the entire domain, such as the shallow- 
water equations (Hirsch, 1988) and the Richards equation (Richards, 
1931) for surface and subsurface flows, respectively. FLUX-PHIM-BGC 
(Shi et al., 2018) and RHESSys (Tague and Band, 2004) models are 
good examples for distributed watershed simulators that couple hy
drologic process, surface energy flux, vegetation and nutrient dynamics. 
FLUX-PHIM-BGC was extended from PHIM (Qu, 2004), a distributed 
hydrologic model that simulates the water flux from surface and 
groundwater and its interaction and stream routing. Later, FLUX-PHIM 
(Shi et al., 2013) was developed to account for the spatial and temporal 
heterogeneity in surface energy balance. Finally, FLUX-PHIM-BGC was 
developed to account for vegetation dynamics and carbon/nitrogen 
cycling in soil and stream. In principle, a spatially discretized model of a 
system with spatially distributed parameters and inputs is expected to 
provide better predictions than its lumped counterpart. However, such 
distributed models also require significantly larger number of unknown 
model parameters to be specified or estimated. The parameter dimen
sionality could quickly become intractable when dealing with complex, 
coupled physical and biogeochemical processes over a large spatial 
domain. Consequently, the computational cost associated with param
eter estimation for such high-dimensional, computationally expensive 
models has hampered the practical application of distributed watershed 
models (Pokhrel et al., 2008). 

4.1. Watershed simulators 

A number of watershed simulators have been developed for water 
quantity and quality modeling at the watershed scale (e.g. Daniel et al., 
2011; Singh and Frevert, 2005; Wellen et al., 2015; Migliaccio and 
Srivastava, 2007; Moriasi et al., 2012; Devia et al., 2015; Elliot et al., 
2010; Gao and Li, 2014). While it is beyond the scope of this review to 
provide detailed characterization of all available watershed models, 
readers are referred to previous review papers for more information 
(Wellen et al., 2015; Fatichi et al., 2016). Given the focus of this review 
on ecohydrological and biogeochemical processes, here we focus on 
watershed simulators that represent coupled vegetation, hydrology, and 
biogeochemistry in both land and river systems within a watershed 
context. Thus, some popular models are not included in our discussion 
because they do not simulate biogeochemical processes pertinent to 
water quality predictions, despite their wide use in watershed hydro
logic modeling. Such examples include the Hydrologic Engineer Cen
ter’s Hydrologic Modelling System (HEC–HMS), Topography Based 
Hydrological Model (TOPMODEL) (Beven, 1997), Variable Infiltration 
Capacity (VIC) model (Liang et al., 1994; Hamman et al., 2018), and the 
Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta 
et al., 1994) are not discussed. 

Specifically, the watershed water quality models that are reviewed 
here include: the MIKE SHE (Système Hydrologique Européen) model 
(Ma et al., 2016; Jaber and Shukla, 2012), Hydrologic Modeling Fortran 
(HSPF) (Duda et al., 2012), Soil and Water Assessment Tool (SWAT) 
(Neitsch et al., 2011; Arnold et al., 1998; Gassman et al., 2007), Storm 
Water Management Model (SWMM) (Huber, 2003; Cambez et al., 2008; 
Rossman, 2010), Annualized AGricultural NonPoint Source model 
(AnnAGNPS) (Bingner et al., 2018; Yuan et al., 2001), Areal Non point 
Source Watershed Environment Response Simulation (ANSWERS) 
ANSWERS-2000 (Bouraoui and Dillaha, 1996), Watershed analysis risk 
management framework (WARMF) (Goldstein, 2001; Herr and Chen, 
2012), Regional Hydro-Ecologic Simulation System(RHESSys) (Tague 
and Band, 2004), The Penn State Integrated Hydrologic model (PIHM) 
coupled with biogeochemcial processes (Flux-PIHM-BGC) (Shi et al., 

2018). Based on the models reviewed in previous studies, as well as the 
models that have been identified as useful tools to support Total 
Maximum Daily Load (TMDL) analysis (Shoemaker et al., 2005; EPA, 
2019), we summarize and compare key hydrological and biogeochem
ical processes represented by those simulators in Table 1. 

As shown in Table 1, those popular watershed models vary widely in 
terms of process complexity and algorithms used to solve different 
processes. In general, all watershed models linked plant growth with 
hydrologic and water quality processes. Most of them used prescribed 
crop characters (e.g. Leaf Area Index – LAI), instead of explicitly simu
lating the dynamic plant growth processes. Simulators also have their 
unique development histories. Each simulator has distinct strengths in 
solving different problems owing to different assumptions that were 
made during the construction of various model architectures. Although 
SWAT dynamically simulates plant growth and development as regu
lated by climatic (e.g. temperature) and environmental (e.g. nutrients 
availability), its representation of forest growth processes are over
simplified (Yang and Zhang, 2016), making it unsuitable for simulating 
forest management. However, RHESSys (Tague and Band, 2004) 
included a carbon cycling model adapted from BioME-BGC (Thornton, 
1998) with litter and soil organic matter decomposition and nitrogen 
cycling model (Parton et al., 1996) to simulate dynamic vegetation re
sponses to climate, soil moisture and nitrogen conditions. Similarly, 
FLUX-PHIM-BGC (Shi et al., 2018) also can simulate the spatial and 
temporal variation of LAI across landscape by adapting carbon cycling 
module from BioME-BGC. 

As to surface runoff, soil water, and ground water simulation, the 
existing models use very different approaches, ranging from empirical 
methods to physically based equations. Most models (except SWMM and 
MIKE-SHE and FLUX-PHIM-BGC) use Manning’s equation or other 
simplified forms of the St. Venant equation rather than its dynamic wave 
version to improve computing efficiency. Among the 9 models, HSPF, 
SWAT, and WARMF explicitly represent soil N and P cycles and simulate 
reactive transport of N and P through channels, while other models use 
simplified approaches to simulate coupled land and channel cycling of 
water quality constituents. 

We also review whether those simulators have been adapted to High 
Performance Computing (HPC) given the increasing complexity and 
computational demand of watershed models. Most of the simulators 
have not been adapted to HPC except for SWAT, RHESSys, FLUX-PHIM- 
BGC, and MIKE-SHE. RHESSys and FLUX-PHIM-BGC adopted the 
openMP library for paralell computing. MIKE-SHE, the only non-public 
domain simulator reviewed here, has implemented algorithms to 
leverage Graphical Processing Units (GPUs) in addition to central pro
cessing unit (CPU)-based parallelization. The channel routing compo
nent of SWMM has been parallelized to solve the Saint Venant equations. 
SWAT has multiple versions of parallization; for example, Wu et al. 
(2013) used Message Passing Interface (MPI) to parallelize the SWAT 
model, and Zhang et al. (2017) use OpenMP (Open Multi-Processing) to 
parallelize the gridded SWAT (SWATG) model. Although HSPF has not 
been parallelized yet, it can be run on linux clusters to facilitate 
parameter estimation in parallel mode. In general, models that offer a 
graphical user interface are not capable of code parallelization for 
shared and distributed memory platforms. 

4.2. Emerging modeling trends, gaps, and challenges 

Recently there has been growing emphasis on including integrated 
surface–subsurface flow, biogeochemistry, and land surface (including 
plants) processes to simulate watershed functions. To properly simulate 
the biogeochemical cycling of carbon, nutrients, and metals within the 
watershed systems, it is essential to couple integrated hydrological 
processes across the atmospheric upper boundaries to the bottom of 
bedrock with vegetation dynamics and mechanistic carbon/nitrogen 
cycling. Representing the increasing complexity of coupled processes 
using physics-based approaches are becoming more and more practical 
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Table 1 
Key hydro-biogeochemical processes simulated in watershed water quality models.  

Model AnnAGNPS ANSWERS- 
2000 

HSPF MIKE-SHE SWAT WARMF SWMM RHESSys Flux-PIHM-BGC 

Landuse (primary) Agriculture Agriculture Multiple Multiple Multiple Multiple Urban Multiple Multiple 
Vegetation Crop growth Crop growth LAI LAI and root 

depth 
Biomass accumulation Vegetation 

cover 
Vegetation cover Vegetation growth Vegetation 

growth 
Surface infiltration SCS curve 

number 
Green-Ampt 
equation 

Philip equation Richards equation SCS curve number or Green- 
Ampt equation 

SCS curve 
number 

SCS curve 
number or Green- 
Ampt equation 

Philip and Green-Ampt 
equations 

Richards equation 

Surface overland 
flow 

SCS curve 
number 

Manning and 
continuity 
equations 

Chezy-Manning equation Saint Venant 
equations 

SCS curve number SCS curve 
number 

SCS curve 
number or Green- 
Ampt equation 

Net detention storage Saint Venant 
equations 

Soil water 
infiltration/ 
drainage 

Storage 
approach 

Storage 
approach 

Storage approach Richards equation Storage approach Storage 
approach 

Storage approach Darcy equation Richards equation 

Subsurface flow Darcy 
equation 

Darcy equation Empirical storage 
approach (lateral 
interflow and 
groundwater outflow) 

Richards equation 
or linear storage 
approach 

Kinematic wave storage model 
(lateral interflow) and linear 
storage approach (shallow 
groundwater) 

Darcy equation Darcy equation Darcy equation (shallow 
groundwater) and linear 
storage approach (deep 
groundwater) 

2D Dupuit 
approximation 

Soil 
biogeochemistry 

N, P, and C N and P N and P User-defined 
pollutants 

N, P, and C N, P, and C User-defined 
pollutants 

N and C N and C 

Instream flow Manning 
equation 

Manning and 
continuity 
equations 

Continuity equation and 
kinematic wave model 

Saint Venant 
equations 

Variable storage or 
Muskingum method 

Manning and 
continuity 
equations 

Saint Venant 
equations 

Kinematic wave model Saint Venant 
equations 

Instream 
biochemical 
constituents 

N, P, and 
pesticides 

N and P N, P, BOD, algae, and O2 User-defined 
pollutants 

N, P, BOD, algae, O2, and 
pesticides 

N, P, BOD, 
algae, and O2 

User-defined 
pollutants 

N/A N/A 

Computing 
platforms 

Windows Windows Linuxa,b and Windows Linuxa and 
Windowsa,c 

Linuxa and Windowsa,d,e Windows Linuxa,f and 
Windows 

Linuxa and Mac OSa Linux,a 

Windows,a and 
Mac OSa  

a Capable of high performance and parallel computing. 
b Kim and Ryu (2019). 
c Danish Hydrologic Institute (2019). 
d Zhang et al. (2013). 
e Rouholahnejad et al. (2012). 
f Burger et al. (2014). 
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with dramatic advances in computing powers nowadays. 
The response of water quality in receiving streams to any perturba

tion including extreme hydrologic events (perhaps occurring elsewhere 
in the watershed) and land use changes is shaped by many factors, 
including geology, topography, land use, and historic regimes of envi
ronmental conditions (e.g., climate and nutrient loading) in the water
shed. These factors vary widely and nonlinearly across spatial and 
temporal scales, which make it difficult to model numerically. Hydro
logical events (Lu et al., 2017) and therefore reaction zones (McClain 
et al., 2003) can be highly localized in the watershed. An accurate 
characterization of watershed biogeochemistry must account for not 
only how hydro-biogeochemical processes are regulated within different 
localized landscape patches (e.g., in upland, riparian zone, and wet
lands), but also how they interact as water travels through these often 
heterogenous patches (Laudon and Sponseller, 2018). Most existing 
watershed models do not dynamically link groundwater and surface 
water or consider the transition zones between these two water bodies. 
Moreover, the limited models to study hyporheic exchange and nutrient 
cycling often assume steady state and static pressure variations. How
ever, anthropogenic activities are known to induce high-frequency 
variations that enhance the hydrologic exchange flows and the associ
ated heat exchange and biogeochemical reactions (Shuai et al., 2019; 
Song et al., 2018), which have not been accounted for in existing 
watershed models. 

Current-generation watershed water quality models do not fully 
incorporate emerging hydro-biogeochemical process understanding 
because of challenges associated with multi-scale heterogeneity, large 
spatial scale, and computational and characterization burdens. As a 
result, those models are of limited use for extrapolating from current 
environmental conditions to understand how watersheds will respond to 
land-use change and atmospheric perturbations. At the same time, there 
is still ongoing debate on how much complexity can be supported by 
data (Jackson-Blake et al., 2017). Most watershed water quality models 
(Kaushal et al., 2018a; Vidon et al., 2018) do not incorporate multi
component reactive transport, which limits their ability to accurately 
predict distinct mixtures of water quality constituents (Kaushal et al., 
2018a) as a result of complex interactions between climate variability 
and human-dominated land use. The lack of biological and reactive 
transport processes in watershed models will likely lead to uncertainty 
and bias in predicting watershed C and N responses. The incorporation 
of fine-scale mechanistic understanding into a watershed biogeochem
ical model remains untested, but it has great potential predictive power 
to capture distinct water quality signatures and sources for multiple 
elements and chemical species across variations in land use, underlying 
geology, atmospheric deposition, and climate. 

While hydrologic connectivity, flow path characteristics and distri
bution, and watershed transit times are key controls on watershed 
biogeochemical processes, suitable measures and model estimation 
procedures for these key variables, including the diagnosis of source 
area contributions (Hewlett and Hibbert, 1967), have not yet been 
devised and are lacking, especially regarding responses under extreme 
climate events. Subsurface flow and transport, a primary vector for 
water flow and material transformations in watersheds with long resi
dence times, is often oversimplified in watershed models. It has been 
documented that no explicit representation of lateral flow, common in 
land-surface models, led to overly spiky behavior in watershed hydro
graphs (Clark et al., 2015a). Explicit representation of topology and 
subsurface transport pathways within models will lead to dramatic im
provements in watershed-scale biogeochemical understanding and 
prediction. 

Many existing watershed models are based on the assumption of 
stationary (Wagener et al., 2010); vegetation is static and the parameters 
of the model are constant over time, and the model parameters values 
calibrated with historical data are assumed to be valid under future 
climate conditions or altered watershed conditions. For example, root
ing depth may change with climate conditions, but if vegetation 

parameters assumes to be static, the model may capture overestimate/ 
underestimate of ET, depending on how rooting depth responds to the 
changing climate in reality. Another example is that fire may alter the 
hydraulic parameters with enhanced soil–water repellency and its 
changed magnitude may vary with the intensity of burn severity (Ebel 
and Mirus, 2014). The enhanced soil–water repellency may decrease 
with time. Therefore, the time stability of hydraulic parameters after fire 
events may not be valid. Since there are spatial variability of burn 
severity within the watershed, without explicitly accounting for the 
spatial–temporal variability of hydraulic variability, watershed model 
can not capture watershed responses to or after forest fires. Forest insect 
infestation may alter the flow paths (Ebel and Mirus, 2014); for example, 
decreasing of riparian forest with insect infestation may elevate the 
groundwater table in the riparian zone that results in generating more 
surface saturation excess flow, and increasing the nutrient exports (DOC 
and nitrate,etc) to stream. The challenge of modeling the impact of 
forest insect infestation is that there will be a time gap between response 
of elevated groundwater table and insect infestation. Therefore, in order 
to capture watershed responses to disturbance, model should explicitly 
incorporate the interacted processes (e.g. vegetation responses to 
warming or deficit of key nutrients (nitrate and phosphorus, etc.), and 
model should have capability of incorporating the altered processes 
after disturbance (fire, and insect infestation). 

Scaling remains as a persistent challenge in watershed hydrology and 
biogeochemistry (Blöschl and Sivapalan, 1995; Scheibe and Yabusaki, 
1998; Bras, 1999; Das and Mohanty, 2008; Li et al., 2008b; Crow et al., 
2012; Gentine et al., 2012; Arora et al., 2015; Dwivedi et al., 2016a; 
Dwivedi et al., 2016b; Dwivedi et al., 2017; McDonnell et al., 2007), 
partially due to the intrinsic complex nature of the coupled processes 
and the computational tractability to capture enough complexity in re
ality. High-resolution watershed models are computationally expensive 
and require boundary conditions and forcings defined at the corre
sponding resolution to capture the nonlinear behavior. In contrast, 
coarse-resolution watershed models are computationally more afford
able but do not adequately resolve finer-scale heterogeneity; thus, they 
are likely to misrepresent critical processes. Ideally, multi-scale process 
representation can be a way to demonstrate the ability of watershed 
models to reproduce processes across scales. Integrating multi-scale in
formation into models will reproduce processes at their native resolu
tions, which can be a viable strategy for circumventing downscaling/ 
upscaling needs. It is important to note that the term “scaling” has 
several uses, such as the estimation of intervening values from sparse 
data, aggregation or disaggregation of information by taking areal av
erages, and information transfer from small to larger areas (Western 
et al., 2002). Upscaling permeability presents such an example, where 
point scale measurements are used to infer effective permeability values 
at different scales. To illustrate further, the Richards equation was 
derived to represent the column-scale water movement, and it is used in 
several watershed simulators, as described in Section 4.1. Although 
these simulators are still useful at the watershed scale, scale-dependent 
parameters are required for acceptable functional behavior (Western 
et al., 2002). 

The literature contains several different approaches to link parame
ters and state-variables across different scales (Blöschl and Sivapalan, 
1995). In this context, the Miller–Miller similar media theory has been 
widely used to scale soil hydraulic properties as well as flow and 
transport equations (Miller and Miller, 1956; Sadeghi et al., 2016). 
Other researchers subsequently developed techniques to derive effective 
hydraulic properties using stochastic, fractal, or scaling invariant ap
proaches (Russo, 1993; Mohanty et al., 2000; Rodriguez-Iturbe et al., 
1998). These techniques have also been used to understand the scaling 
characteristics of other hydrologic aspects such as drainage patterns, 
stream networks, and topography (Gupta and Waymire, 1990; Sivapalan 
et al., 2011). The extension of the Miller–Miller similar media theory is 
the representative elementary area/watershed and Reynolds’ averaging 
concepts, assuming that the physics are known at the smallest scale 
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considered. These concepts have primarily been used to define the 
physically meaningful control volumes at which hydrologic processes 
operate and give insights into understanding large-scale processes 
(Wood et al., 1988; Reggiani et al., 1998; Reggiani et al., 1999; Reggiani 
et al., 2001). The representative hillslope is an example of one such 
meaningful control volume in watershed science, which has been widely 
used to understand precipitation runoff, infiltration, and other key hy
drologic processes (Troch et al., 2003; Troch et al., 2015; Hazenberg 
et al., 2015; Hazenberg et al., 2016). Biogeochemical scaling is still in its 
infancy. There are a few examples that have used dimensionless 
numbers (e.g., Damköhler numbers), Bayesian methods, and scale- 
dependent rates to upscale geochemical concentrations and fluxes (Gu 
et al., 2007; Li et al., 2008b; Arora et al., 2015; Dwivedi et al., 2016b). 
However, we will conclude here by mentioning that hydrologic pro
cesses mediate biogeochemical processes; therefore, resolving hydro
logic scaling should be key in efforts to address biogeochemical scaling 
issues. 

Despite of insights offered in the literature, the fundamental problem 
remains the limited predictive understanding of hydrobiogeochemical 
systems at the watershed scale due to the lack of a unifying theory of 
hydrologic scaling. In fact, there may not exist any single universal 
relationship of hydrologic processes, given the inexact nature of hy
drologic science (Blöschl and Sivapalan, 1995; Beven, 2006). Notwith
standing these issues, it is possible to develop scaling laws or strategies 
to enhance predictive capabilities using watershed models. Here we 
want to identify key issues related to distributed parameter models and 
give directions for future research. 

5. Watershed model and data integration 

Extensive efforts have enhanced the mechanistic foundation of 
process-based watershed models in capturing interacting physical and 
biogeochemical processes while also making them spatially distributed 
to represent the spatial heterogeneity in parameters and inputs (Wellen 
et al., 2015). The development of increasingly mechanistic models is 
accompanied by concerns of overparameterization, equifinality (Jack
son-Blake et al., 2017; Beven and Binley, 1992; Beven, 2006), and dif
ficulties in estimating valid, spatially-distributed model parameters and 
driving forces (Kollet and Maxwell, 2008; Samaniego et al., 2010; 
Montanari and Koutsoyiannis, 2012; Raleigh et al., 2015; Raleigh et al., 
2016). Some inputs (forcing and parameters) can be determined through 
direct observations in the field, whereas others are inversely estimated 
using the input–output records of the watershed. The best practices are 
recommended to include sensitivity analysis, optimization/calibration, 
validation, uncertainty analyses, and quantification of fit (Chapra, 
2008). However, the increasing computational cost of high-resolution 
mechanistic watershed models inhibits the broad community from 
following the best practice to improve process-based models. It is an 
even bigger challenge for models targeting the watershed responses 
under extreme events (Wellen et al., 2015). Most model calibration 
practices often rely on single-point, sparse time-series observations 
(Wellen et al., 2015; Robson, 2014), which does not account for all the 
information that is contained in spatiotemporal observation data, and at 
the same time, it could lead to preference over simpler models. 
Considerable uncertainty exists in conceptualizing (i.e., selecting pro
cesses and their associated mechanisms for all the compartments and 
interfaces and parameterizing a process-based watershed model 
(McDonnell et al., 2007; Duncan et al., 2013). A multi-model approach 
called the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) (Clark et al., 2015a; Clark et al., 2015b) framework has been 
explored for hydrologic models (Clark et al., 2015a; Fenicia et al., 2011; 
Clark et al., 2008) to evaluate various conceptualization decisions in a 
systematic and controlled way. By doing so, modelers can select among 
multiple alternatives to improve model fidelity and pinpoint specific 
reasons for model weaknesses to prioritize research and development 
needs. 

It is recently argued that the success of data-driven machine learning 
methods relative to process-based modeling indicates that there is un
used information in observation data (Nearing et al., 2018). A more 
rigorous way of dealing with uncertainty is to pose it in terms of infor
mation, i.e., asking the questions of “how much information do we have 
and how well do we use it? (Nearing et al., 2018)” In this context, 
improving a model is about assimilating information (or learning) from 
both observations and models, thus establishing a theoretical linkage 
with the Bayesian learning based on the Bayes’ theorem. Using a 
Bayesian learning framework, classical questions in watershed modeling 
such as scaling, heterogeneity, and complexity can all be posed in terms 
of information and learning. 

Sensitivity analysis is a vital tool in numerical modeling for quanti
fying contribution of uncertainty from various sources to the overall 
uncertainty in model predictions (Dai et al., 2017a; Dai et al., 2017b; 
Razavi and Gupta, 2015; Gupta and Razavi, 2018). Conventional global 
sensitivity analysis methods (Saltelli et al., 2000; Chu-Agor et al., 2011; 
Song et al., 2015) focus on the importance of model parameters. They 
are insufficient for identifying dominant model processes, each of which 
usually consists of multiple parameters (Clark et al., 2015a; Clark et al., 
2015b). Process-oriented sensitivity analysis has gained increasing 
attention for improving hydrological models and beyond (Dai et al., 
2017b; Sivakumar, 2004; Sivakumar, 2008). A recent advancement in 
sensitivity analysis is to quantify uncertainty contribution from multi
ple, spatially-distributed model inputs using a simple, three-layer 
structure of uncertainty: model parameters, model structures, and 
forcing scenarios. Recognizing that a three-layer structure is too 
restrictive to describe the large number of uncertainty sources involved 
in multi-process environmental modeling and their complex relation
ships, a new sensitivity analysis method was developed based on the 
concepts of Bayesian networks (BNs) (Heckerman, 1997; Velikova et al., 
2014; Pearl and Judea, 1988) to account for the complex hierarchical 
uncertainty structure of a model system (Dai et al., 2019). This BN-based 
sensitivity analysis method uses a graphical representation to propagate 
uncertainty with Bayesian inference, i.e., deriving joint probabilities. It 
affords substantial flexibility to quantify uncertainty contribution from a 
group of inputs, which is not possible without BN. 

Transformational advances in watershed modeling capabilities are 
facilitated in part by dramatic increases in the amounts, quality, and 
coverage of relevant observational data, but new challenges exist in 
harnessing big data (Uddameri, 2018; Rosenberg and Madani, 2014). 
Importantly, coordinated efforts by many governmental agencies over 
the past few decades have resulted in widely available datasets with 
extensive or even seamless spatial coverage. In the United States, data 
availability and interoperability have been advanced through a number 
of initiatives. The U.S. Office of Management and Budget published 
Circular A-16 in 2002, which “provides direction for federal agencies 
that produce, maintain, or use spatial data either directly or indirectly in 
the fulfillment of their mission and provides for improvements in the 
coordination and use of spatial data.” Further coordination was spurred 
by the U.S. Office of Science and Technology Policy (Subcommittee on 
Water Availability and Quality) through the Open Water Data Initiative 
started in 2014 (Bales, 2016; Maidment, 2016). These coordinated ef
forts over the past two decades have led to critical data products such as 
the National Hydrography Dataset (NHD), the Watershed Boundary 
Dataset (WBD), and NHDPlus (an enhanced version of NDH). Fatichi 
et al. (2016) describe several other sources of freely-available internet- 
accessible spatial datasets including soil survey, precipitation, metero
logical forcing, river morphology and hydrogeologic property data. 
Remotely-sensed data such as those provided by NASA’s Earth 
Observing System ( https://eospso.nasa.gov/content/nasas-earth-o 
bserving-system-project-science-office) further expand data types to 
include vegetation and land use/land cover, soil moisture, changes in 
groundwater levels, and many others. 

Work is ongoing not only to increase data availability, but also to 
break down barriers to effective use of these data in model development. 
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A key challenge is posed by the diversity of data formats, locations, and 
modes of access, which often requires a large time investment in data 
compilation and formatting during model construction. Efforts to 
address this challenge include development of standardized data models 
(Hu et al., 2015; Abdallah and Rosenberg, 2019), open source tools for 
data retrieval and preprocessing such as HydroDesktop (Ames et al., 
2012), HydroShare (Horsburgh et al., 2016) and the Observatory for 
Gridded Hydrometeorology (Phuong et al., 2019), and methods for 
linking Geographical Information Systems (GIS) with process-based 
models in loosely-coupled (Alcaraz et al., 2017), tightly-coupled 
(Bhatt et al., 2014), and seamlessly-coupled (Wang et al., 2016) 
approaches. 

These advances not only enable better and more efficient develop
ment of process-based distributed hydrologic models, but also can lead 
to enhanced collaboration (Bandaragoda et al., 2019), improved 
reproducibility of published results (Stagge et al., 2019), and broader 
adoption of open science in practice (Yu et al., 2016). Automated model 
setup and execution based on open data, while necessarily subject to 
careful evaluation, could dramatically increase model accessibility and 
is moving from vision to reality (e.g., Starn and Belitz, 2018; Lewis et al., 
2018). 

6. Going forward: Systematic extraction of information from 
both observations and modeling for learning watershed systems 
to reduce uncertainty 

Bayesian Networks possess great potential to unite data-driven and 
process-based modeling approaches to identify and extract the most 
useful information out of observational data and predictive models. The 
new BN development, combined with the wide adoption of Bayesian- 
based inverse modeling, parameter estimation, data assimilation, and 
model diagnosis (Rubin et al., 2010; Chen et al., 2013; Chen et al., 2012; 
Nearing et al., 2018; Liu and Gupta, 2007; Gupta et al., 2008; Over et al., 
2003; Simmons et al., 2016; Ye et al., 2004; Joseph and Guillaume, 
2013; Gelman et al., 2014; Nearing et al., 2016), suggests a new and 
potentially powerful Bayesian framework can be built to unite sensi
tivity analyses, data assimilation, inverse modeling, and model inter
comparison/diagnosis under the Bayesian theory for systematic data- 
model fusion under both data and model uncertainty. BN will allow 
the integration of deep learning methods (Sun et al., 2019; Sun, 2018; 
Shen, 2018; Gentine et al., 2018; Reichstein et al., 2019) to discover 
unknown physics where process understanding is lacking. Such a 
framework for data-model fusion will advance the fundamental under
standing of hydro-biogeochemistry in watershed systems by iteratively 
asking questions like “What do we know about the system; How well are 
we translating that knowledge into predictive power; and How can we 
be more predictive?” and answering them with integrated sensitivity 
analyses, data assimilation, and mutual information analyses. Such 
systematic learning from data and models will not only lead to a new 
modeling capability for forecasting water quality and quantity in wa
tersheds of various scales and land use patterns; it can also guide design 
of monitoring networks and experiments to collect the most valuable 
information to reduce uncertainty in predictive models. Ultimately, the 
data-model integration will link best-in-class modeling capabilities with 
the multi-agency long-term monitoring efforts to meet society’s needs 
under a changing environment, thus providing transferable scientific 
tools to help manage vital watershed systems for sustained water secu
rity and human and ecosystem health. 

6.1. Opportunities for data-model co-design 

There are many paths forward for future integration of more and 
better data into process-based numerical models. One is the collection 
and analysis of isotope data. Historically, isotope hydrologists utilized 
environmental and artificially labeled radioactive isotopes (e.g., Ra, 3H, 
14C, 24Na, 82Br, and 32P) to measure physical processes, such as stream 

discharge, groundwater direction, velocity, and age, and sediment 
loading at the reach or regional/aquifer scale (Joly, 1922; Agency, 1963; 
Agency, 1967) before broadly switching to utilizing conservative 
transport of stable isotopes (e.g., 2H, 18O, and 13C) to infer other things, 
such as flow path characteristics (Klaus and McDonnell, 2013), water 
transit times (McGuire and McDonnell, 2006), weathering (Schulte 
et al., 2011), and water (Agency, 1970) and carbon (Dawson and 
Simonin, 2011) balances at the watershed scale. More recently, reactive 
transport of stable isotopes of nitrogen (15N) and phosphorus (18O in 
PO4) have been utilized to identify non-point sources of anthropogenic N 
(Fry, 1999; Lake et al., 2001; Spoelstra et al., 2001; Robinson, 2001; 
Mayer et al., 2002; Zanden et al., 2005; Kendall et al., 2008; Savard 
et al., 2010; Nestler et al., 2011; Kaushal et al., 2011) and P loading 
(McLaughlin et al., 2006; Elsbury et al., 2009; Paytan and McLaughlin, 
2012; Granger et al., 2017; Tonderski et al., 2017; Ishida et al., 2019), 
and, later, elucidate specific biogeochemical processes, such as dilution 
(Archana et al., 2018), nitrogen assimilation (Deutsch et al., 2009; 
Nikolenko et al., 2018), denitrification (Wexler et al., 2014), phospho
rous release from anoxic sediments (Elsbury et al., 2009), and cellular 
metabolism in aquatic food webs (Davies et al., 2014) at various 
spatiotemporal scales. 

Now, isotope data are increasingly coupled with or incorporated into 
numerical models, which further augment the ability of these models to 
simulate complex physical processes with high precision. Such processes 
include groundwater flow dispersion (Cornaton et al., 2011; Jiang et al., 
2019), preferential flow partitioning (Van der Hoven et al., 2002; Dusek 
and Vogel, 2018), surface/subsurface water mixing (Turner and Town
ley, 2006), nitrification and denitrification (Choi et al., 2003; Chen and 
MacQuarrie, 2004; Rütting and Müller, 2007), and anammox (Granger 
and Wankel, 2016). The use of chemical and isotopic tracers has moved 
out of the field of chemi-hydrometry (Groat, 1915) to isotope hydrology 
(Agency, 1970) to hydrogeology and geochemistry (Agency, 1974), and 
now, to hydro-biogeochemistry and process-based numerical modeling. 
Watershed modelers will continue to require more isotope data to feed 
into their models and many current monitoring networks serve as suit
able infrastructure for collecting such data. 

On the other hand, remote sensing (RS)–in the context of watershed 
science–is the science and art of acquiring information about the land 
surface and subsurface or physical processes using remotely located 
sensors Ritchie and Rango, 1996. A diverse set of RS techniques exist to 
collect above- and below-ground data. RS relies on active and passive 
sensing technologies. Active sensors emit energy to examine part of the 
watershed (i.e., target), while passive sensors detect the radiation 
emitted from the target. After acquiring signals, various algorithms have 
been developed to translate them into surface and subsurface properties 
as well as hydrological and biogeochemical variables. The quality of RS 
data depends on its spatial, temporal, and spectral resolutions. More 
information about RS can be found in the literature Arora et al., 2019; 
Entekhabi et al., 2010; Fonstad et al., 2013; Li et al., 2008a; Turner et al., 
2004; Zhang et al., 2003. RS provides a means to acquire spatial data 
and characterize their heterogeneity at the watershed scale. On the 
contrary, conventional methods are primarily limited to point mea
surements and incapable of providing adequate data to represent the 
heterogeneity of the land surface and subsurface properties reasonably. 
Therefore, the use of RS data has the potential to transition data-poor to 
data-rich environments needed for advancing watershed science. The 
use of RS in hydrology is not new, and its potential was revealed very 
early. In 1965, Walter Langbein, a pioneer of watershed science, advo
cated for the use of satellite platforms for acquiring hydrologic data, 
while RS techniques could measure soil temperatures, water vapor, and 
radiation using aircraft platforms (Langbein, 1965). Ragan and Jackson 
(1980) subsequently used curve numbers and land use mapping 
(Landsat product) to quantify runoff (Ragan and Jackson, 1980). More 
notably, Beven and Kirkby (1979) demonstrated the importance of 
topography in predicting runoff using digital elevation maps. Since then, 
numerous articles published in the literature have used RS products to 
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describe and characterize different aspects of watershed science, such as 
soil moisture, surface temperature, landcover/vegetation, precipitation, 
snow depths and cover, and groundwater (Fonstad et al., 2013; Hutengs 
and Vohland, 2016; Li et al., 2008a). 

We can now see every component of the water cycle remotely: pre
cipitation, snow, evapotranspiration, surface soil moisture, deep 
groundwater, and river discharge (e.g., Andreadis et al., 2017). For 
rainfall, the Tropical Rainfall Measuring Mission (TRMM) at the turn of 
the millennium (Kummerow et al., 1998) eventually evolved into the 
Global Precipitation Measurement (GPM) constellation (Smith et al., 
2007); CloudSat has also provided complementary measurements of 
precipitation (Stephens et al., 2002). We have been able to see snow 
cover from the MODerate resolution Imaging Spectroradiometer 
(MODIS), with approaches to derive snow water equivalent (SWE; Hall 
et al., 2002); airborne capabilities such as the Airborne Snow Observa
tory (ASO) can assess SWE with high fidelity using LiDAR and can 
complement the snow depth measurement with albedo used for melt 
rates (Painter et al., 2016). Evapotranspiration has been derived from 
Landsat, the Advanced Very High Resolution Radiometer (AVHRR), and 
MODIS for decades (Fisher et al., 2017), and the ECOsystem Spaceborne 
Thermal Radiometer on Space Station (ECOSTRESS) on the Interna
tional Space Station was designed specifically to focus on evapotrans
piration at very high spatial and temporal resolutions (Fisher et al., 
2019). A snapshot example of evapotranspiration over the Columbia 
River Basin in the US is shown in Fig. 2. 

The Soil Moisture Observing System (SMOS) and Soil Moisture 
Active Passive (SMAP) missions have provided global coverage of sur
face soil moisture (Kerr et al., 2001; Entekhabi et al., 2010); airborne 
measurements provide increased depth and canopy penetration (Col
liander et al., 2017). The change in deep groundwater storage can be 
derived through gravity-based measurements of total water storage from 
the Gravity Recovery and Climate Experiment (GRACE) and GRACE 

Follow-On (GRACE-FO) missions (Rodell and Famiglietti, 2002; Sheard 
et al., 2012); global positioning systems (Argus et al., 2014) and mea
surements of surface deformation (Farr and Liu, 2014) can also be used 
to derive changes in groundwater. Finally, LiDAR can be used to mea
sure river (and lake, reservoir, and ocean) heights, which can be used to 
infer river discharge; the airborne Surface Water and Ocean Topography 
(AirSWOT) has established the foundation for the upcoming satellite 
SWOT mission (Durand et al., 2010). Space agencies throughout the 
world continue to develop new missions to advance remotely sensed 
hydrological measurements, and the future will contain an even richer 
assessment of the hydrological cycle from space (National Academies of 
Sciences, 2018). 

Although RS products are currently primarily used to characterize 
watershed properties for hydrologic processes, efforts are underway to 
derive biogeochemical properties (e.g.leaf chemistry) based on geo
morphology and vegetation characteristics using hyperspectral data 
(Falco et al., 2019) as well as to understand the subsurface physical 
properties of the watershed using airborne electromagnetic (AEM) sur
vey (Hubbard et al., 2018). Overall, RS promises massive data on every 
aspect of watershed science. A fusion of distributed hydrologic models 
and RS will take watershed science to the next level in the future. 

Additionally, US DOE’s Biological and Environmental Research 
(BER) office manages unique user facilities that can generate genomics 
and molecular-level data that are highly relevant to understand water
shed biogeochemical processes. For example, Joint Genome Institute 
(JGI) ( https://jgi.doe.gov/) focuses on generating data from nucleic 
acid (DNA, RNA) sequencing and analysis that are used to support BER 
missions in biogeochemistry, carbon cycling, and bioenergy. Particu
larly relevant to watershed hydro-biogeochemistry is JGI’s focus on 
using sequence-based data to understand biological mechanisms that 
influence biogeochemical processes, which in turn control the cycling of 
carbon and nutrients through environmental systems. JGI has a heavy 

Fig. 2. Evapotranspiration over the 
Columbia River Basin in the US from 
ECOSTRESS. The data show variability 
across the basin as well as fine-scale 
heterogeneity (70 m resolution) asso
ciated with landscape fragmentation 
and agricultural water use. Blue colors 
indicate high evapotranspiration (W 
m− 2) at the time of overpass (12:08 
PM local time on June 14, 2019), and 
beige colors indicate low evapotrans
piration. (For interpretation of the 
references to color in this figure 
legend, the reader is referred to the 
web version of this article.)   
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emphasis on interrogating microbial communities from natural systems, 
in context of associated physical and chemical processes, due to mi
crobes acting as essential catalysts driving C and nutrient cycling. 
Sequence data are generated from a broad range of environmental sys
tems, spanning terrestrial, subsurface, and inter-facial components of 
watersheds. Ultimately, data generated by JGI are meant to help 
improve mechanistic models aimed at predicting the effects of envi
ronmental disturbances, such as hydrologic disturbance (e.g., drought, 
flood, altered snow pack) and increasing greenhouse gas concentrations. 
Similarly, Environmental Molecular Science (EMSL) user facility 
(urlhttps://www.emsl.pnnl.gov/) aims to lead the scientific community 
in gaining predictive understanding of molecular processes that control 
the flux of materials underpinning biological and ecosystem functions. 
Watershed biogeochemistry is an important aspect of this scientific 
vision. EMSL maintains relevant integrated research platforms in (1) 
plant, soil and subsurface transport; (2) Isotopic and chemical analysis; 
(3) proteomics, metabolomics and transcriptomics; and (4) theory and 
simulation, data analytics and visualization. As DOE user facilities, both 
JGI and EMSL provide no-cost access their extensive array of instru
mentation and staff expertise through a competitive, peer-reviewed 
proposal process. At the same time, DOE-BER has also has invested 
substantially in building an open-source software and data platform, 
Systems Biology Knowledgebase (KBase, http://kbase.us), to enable 
data sharing, integration, and analysis of microbes, plants, and their 
communities (Arkin et al., 2018). KBase consolidates information from a 
variety of widely used external data repositories, including more than 
30,000 reactions and compounds from KEGG (Kanehisa and Goto, 
2000), BIGG (Schellenberger et al., 2010), and MetaCyc (Caspi et al., 
2006). KBase provides a web-based user interface that allows users to 
easily link these diverse data types with a range of analytical functions. 
Thus, it serves as a much-needed community resource to foster open 
collaboration and enable large-scale analyses on scalable computing 
infrastructure and consequently accelerate scientific discovery with 
improved reproducibility. 

While data generating capabilities continue to expand, as summa
rized above, the vast majority of these efforts do not use models to guide 
their design and implementation. There are significant opportunities to 
optimize additional data generation by explicitly using model-generated 
hypothesis and model-based uncertainty and sensitivity analyses to 
guide the types of data generated, their spatial distribution, and tem
poral resolution. This is the spirit of model-experiment iteration or 
‘ModEx.’ For example, recent field and lab-based efforts pointed to 
important biogeochemical influences of organic matter thermodynamic 
properties within river corridors (Stegen et al., 2018; Graham et al., 
2018; Graham et al., 2017; Garayburu-Caruso et al., 2020; Boye et al., 
2017). Many of these studies were in aerobic systems, in which ther
modynamics has not been considered to play a role (Jin and Bethke, 
2003). That deviation from theoretical expectation prompted the 
development of new theory that mechanistically links thermodynamic 
aspects of organic matter to catabolism and anabolism (Song et al., 
2020). These new theoretical developments point to a key parameter, 
referred to as lambda, that reflects the efficiency of converting the en
ergy gained from organic matter oxidation into microbial biomass and, 
in turn, biogeochemical reaction rates (Song et al., 2020). The devel
opment of this ‘lambda theory’ has inspired the search for spatial and/or 
temporal patterns in lambda across river corridors. More specifically, 
data from a 2019 sampling campaign organized by the WHONDRS 
consortium (Stegen and Goldman, 2018; Consortium, 2020) and carried 
out by the community are currently being explored for continental- to 
global-scale spatial and/or environmental gradients in lambda. It is 
expected that resulting knowledge will be used to develop mechanistic 
models across river corridors using tools provided by KBase. Those 
models can then be used to generate new hypotheses about the drivers 
and influences of spatiotemporal variations in lambda and other aspects 
of organic matter chemistry, among other mechanisms such as microbial 
physiology. We are in the midst of what will likely be a long-term 

iteration between models and data in which one inspires the next step 
for the other. It is important that the watershed science community work 
together to find ways to expand the use of ModEx at a broad range of 
spatial and temporal scales. 

6.2. Incorporating reactive transport capabilities in watershed models 

The incorporation of fine-scale mechanistic understanding into a 
watershed biogeochemical model has the great potential to enhance 
model predictive power to capture distinct water quality signatures and 
sources for multiple elements and chemical species across variations in 
land use, underlying geology, atmospheric deposition, and climate. New 
capabilities are needed to couple the reactive transport codes with in
tegrated hydrologic simulators, such as WRF-Hydro (Barlage et al., 
xxxx), Parflow-CLM (Maxwell et al., 2015; Maxwell and Condon, 2016), 
and CLM-PFLOTRAN (CP1.0) (Bisht et al., 2017). Subsurface reactive 
transport simulators have improved notably in capability and ease of use 
in the past decade (see Table 3 in (Steefel et al., 2015)). Most of them 
employ an operator splitting approach to solve reaction and transport 
terms, an approach in which a single time step consists of a transport 
step followed by a reaction step using the transported concentrations. 
This is in opposition to the global implicit approach in which reaction 
and transport are solved simultaneously. The global implicit approach is 
difficult for multicomponent and multispecies systems because the 
coupling of species via reactions increases the size of the coefficient 
matrix and also typically results in sets of nonlinear equations which 
must be solved. While reactive transport modeling is currently more 
prevalent in subsurface science, it is possible to couple the biogeo
chemistry engines, such as PFLOTRAN (Hammond et al., 2014) and 
CRUNCH (Steefel et al., 2015), with surface flow and transport. In 
addition, temperature is not only an important water quality parameter 
in itself, but also controls biogeochemical reactions in all compartments 
of the watershed system. Therefore, coupling thermal processes with 
reactive transport processes is also highly desirable. 

One essential step in modern reactive transport modeling is to 
construct the reaction networks and the associated reaction kenetics. 
Metagenomic information can be used to generate metabolic pathways 
leveraging the community resources made available through the afore
mentioned KBase. High resolution molecular data (microbial and 
biogeochemical) are implicitly represented in many reactive transport 
and process-based models of watershed compartments but are rarely 
explicit. Such implementations rely on these data types to inform con
ceptualizations of model structures and/or to represent select biogeo
chemical reactions. Despite computational challenges in incorporating 
high resolution molecular data into watershed-scale models, the theo
retical basis for doing so is strong. Many biogeochemical processes are 
catalyzed by microbial enzymes, and therefore molecular information 
on microbiome structure (i.e., species composition and distribution of 
enzyme-encoding genes) and metabolomes (i.e., reactants and products) 
should correspond to biogeochemical process rates (Rocca et al., 2015). 
Changes in microbiome in turn impact resource availability for food 
webs, therefore generating cascades effects at the watershed-scale 
(Graham et al., 2019). Additionally, ecological theory poses many cir
cumstances under which molecular data types should be decoupled from 
prevailing environmental conditions (e.g., stochastic assembly, pheno
typic plasticity, and priority effects; DeWitt et al., 1998; Hubbell, 2001; 
Fukami et al., 2010; Stegen et al., 2012; Nemergut et al., 2013; Graham 
et al., 2016), thereby providing predictive power to process-based 
models beyond hydrologic and chemical variables alone. Indeed, a 
recent metanalysis showed that statistical models of biogeochemical 
rates that were based solely on environmental parameters left 44% of 
variation unexplained on average, posing the opportunity for molecular 
data to improve predictive power (Graham et al., 2016). 

Molecular data may also provide valuable insight for streams and 
rivers in which continuous monitoring of hydrobiogeochemical attri
butes is unfeasible (Seibert and McDonnell, 2013; Good et al., 2018). 
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Studies have coupled stream microbiomes to basin hydro
geomorphology (Read and Vogel, 2015), flow rate (Crump and Hobbie, 
2005; Doherty et al., 2017), and other catchment characteristics (Savio 
et al., 2015). Good et al. (2018) recently introduced the concept of 
genohydrology, which proposes that microbial gene fragments can be 
used to gap fill for unmeasured variables in predicting river corridor 
hydrologic function. Thus, there is ample opportunity to improve pre
dictive models by incorporating molecular data streams. Recent 
modelling advances have attempted to do so, but there has been no 
conclusive evaluation of the circumstances under which high resolution 
molecular data are needed to improve model predictions. Overall, high 
resolution molecular data can be extremely valuable in predictions of 
watershed function but only in certain environmental contexts and 
spatiotemporal scales. Coarser, less computationally intensive models 
may be suitable for a substantial portion of conditions. Therefore, new 
emerging modelling frameworks should provide flexibility in model 
structure to account for situational molecular data within watershed 
scale models. 

The incorporation of high-resolution carbon (C) characterization 
into watershed models is an emerging field and deserving more atten
tion. Carbon is the primary energy source for biogeochemical reactions 
and aquatic food webs in watersheds. Size and chemical speciation of C 
pools are coupled to watershed hydrology as well as C source (e.g., 
surface vs. groundwater, terrestrial vs. aquatic; Stegen et al., 2016; 
Graham et al., 2017; Maavara et al., 2017; Wohl et al., 2017; Graham 
et al., 2018; Stegen et al., 2018). Recent field-based observations have 
suggested that hyporheic zone respiration is tightly correlated to the 
presence of both thermodynamically-favorable C (Stegen et al., 2018) 
and organic N (Graham et al., 2017; Graham et al., 2018). Laboratory 
investigation further revealed that interactions between C thermody
namics, C stoichiometry, and whole sediment nutrient status regulate 
respiration rates. Similar dynamics have been observed in anaerobic 
redox conditions in wetlands (Boye et al., 2017; Boye et al., 2018). 
Carbon chemistry is spatiotemporally variable within watersheds and 
therefore is a prime candidate for enhanced predictive power from the 
inclusion of molecular data in watershed models. For instance, elevated 
river stage washes terrestrial C into surface waters (Golladay et al., 
2000; Atkinson et al., 2009), changing the ratio of terrestrial-to-aquatic 
material and the associated C chemistry of aquatic C pools. Conversely, 
low stage creates patchy changes in biogeochemistry associated with 
groundwater discharge (Dent and Grimm, 1999; Dahm et al., 2003). 
While linkages between hydrology and C pool character have been 
studied extensively, subsequent impacts on watershed biogeochemistry 
are not well-understood. Given recent research demonstrating the 
impact of C chemistry on biogeochemistry across a range of oxygen 
concentrations and the heterogeneous nature of C pools through space 
and time, we highlight high resolution molecular data describing C 
chemistry as a promising avenue for watershed model development. We 
propose that molecular measurements and experiments need to be tar
geted in such a way that they are also useful for evaluating which types 
of data are useful and under what conditions. 

To address complex multiscale watershed challenges, we need to 
integrate modeling advances that generally happen in parallel across a 
disconnected software ecosystem. Current approaches for hydro
biogeochemical modeling can involve a broad range of modeling plat
forms spanning from pore-scale reactive transport codes to reach-scale 
hydrobiogeochemistry models, particle tracking, and watershed- and 
hillslope-scale flow models. Unfortunately, the historical development 
of these tools has been siloed, with domain experts developing models 
that are focused on specific processes or spatial scales of interest. The 
result is our current disconnected ecosystem of modeling tools, which 
often have overlapping capacities but limited ability to communicate 
with one another or leverage each other’s strengths. This landscape has 
evolved from lack of coordination between different modeling com
munities, which may have historically worked in isolation but are 
increasingly collaborating as we adopt an integrated approach to 

hydrobiogeochemical systems. Additionally, domain scientists are 
generally not trained in computer science and may have limited or no 
formal training in best practices for agile software development. Moving 
away from this paradigm will require software interfaces that facilitate 
process sharing between models without inhibiting the model-specific 
advances that are needed to improve process representation at every 
scale. Workflows are also needed that allow users to more efficiently 
learn new tools and leverage the results from existing models, which 
may be outside their domain specialty. 

7. Summary and conclusion 

The success of the aforementioned proposed advances in watershed 
science will depend critically on the utility of future models, which in 
turn will depend on their accessibility to other users. Given the inherent 
complexity of watershed models and the substantial effort required to 
learn how to use them, watershed models should be developed with the 
Earth science community, and perhaps beyond, in mind. In addition to 
providing source code and documentation of data, model developers are 
encouraged to work under the Open Science concept by following the 
“PLUS” guideline (Yu et al., 2016), making a model structure Persistent 
(i.e., data, software, and authors should be persistently identifiable 
through digital object identifiers, for example), Linked (i.e., data and 
software should be linked with figures and directions referring to each 
other, for example), User-friendly (i.e., software and documentation 
should be written with a broad audience in mind), and Sustainable (i.e., 
software should be maintained at repositories so that access and further 
development are possible) (PLUS). Additionally, model packages should 
include documentation of the workflow in order for a novice to use it 
completely (Yu et al., 2016). Tools for such documentation include 
Jupyter Notebooks, which provides a platform for written documenta
tion, executable code, and data visualization (Fienen and Bakker, 2016; 
White et al., 2016). 

Beyond model accessibility, there is a need to couple open science 
principles/methods across both data generation and modeling with co
ordinated research efforts that span multiple watersheds. Coordination 
across watersheds that vary in physical, chemical, and biological attri
butes is essential to elucidate transferable principles. Such principles can 
be used to develop simplified representations of governing processes to 
gain computational efficiency in larges-scale models. To identify chal
lenges, opportunities, and solutions to achieve open, coordinated multi- 
watershed science, the DOE BER program has worked with the water
shed science community to develop the concept of ’open watershed 
science by design.’ The vision is captured in a recent workshop report ( 
https://doesbr.org/documents/Open_Watersheds_By_Design_DRAFT. 
pdf) and is based on the purposeful design of watershed science efforts 
that ascribe to a set of key principles. In addition to the PLUS guidelines 
summarized above, open watershed science by design is based on ICON- 
FAIR principles. ICON research is (1) Integrated whereby data genera
tion and modeling activities are designed from the beginning to link 
physical, chemical, and biological data and processes, (2) Coordinated 
using consistent protocols from field to lab to analysis/modeling, (3) 
Open such that data and codes are intentionally structured to be find
able, accessible, interoperable, and reusable (FAIR) (Wilkinson et al., 
2016), and (4) Networked whereby data generation and sample 
collection are designed with and done by the watershed science com
munity such that resources (e.g., data and sensors) are provided to 
contributors that would otherwise be difficult to access. 

Key to ICON-FAIR research is the use of design thinking methodol
ogies to enable innovative solutions to challenges such as governance, 
protocol development, resource distribution, data-model integration, 
and the protection of individual researcher identity. Many of the chal
lenges with open science in general and ICON-FAIR research in partic
ular are technical, but others are cultural and institutional. There is a 
need for both top-down and bottom-up solutions. For example, some of 
the top-down solutions include (1) funding agency requirements for and 
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quantitative evaluation of making data FAIR and codes PLUS, (2) sus
tained investment in new cyberinfrastructure that streamlines the pro
cesses of making data FAIR and integrating those data with process- 
based and data-driven models, and (3) institutional change in how re
searchers are evaluated, with greater weight given to open data and 
code products. Bottom-up solutions to achieve broad adoption of open 
science and ICON-FAIR research are very diverse such as (1) education 
on the benefits to individuals of making their data open (e.g., more ci
tations), (2) senior researchers that are relatively immune to being 
’scooped’ leading by example through extensive use of open science 
methods (e.g., FAIR data, study preregistration), (3) researcher-initiated 
opportunities for other researchers to engage in synthesis studies based 
on the FAIRness and PLUSness of their data and code, and (4) 
community-developed manuscripts or analyses that are open to all to 
contribute (e.g., developing manuscripts through social media as in 
Graham et al. in prep). 

Combining open-science principles with design-thinking techniques 
has great potential to deliver new understanding and modeling/pre
dictive capacity that are directly (e.g., improved predictions of water 
quality) and indirectly (e.g., informing Earth system models) relevant to 
society. Essential to open science and ICON-FAIR-PLUS research in a 
watershed context is leveraging and integrating capabilities, data, and 
expertise across agencies. This will reduce fragmentation across various 
watershed science efforts, thereby enabling an interoperable system of 
knowledge, data, capabilities, and models that can be used to enhance 
our ability to predict the response of watershed systems to ever- 
increasing disturbances. We point the reader to the workshop report 
on open watershed science by design for additional details ( https://does 
br.org/documents/Open_Watersheds_By_Design_DRAFT.pdf). 

Although interagency cooperation and the increasing practice of 
open science principles have already had dramatic impacts on avail
ability of data, codes, and model results, there remains great opportunity 
for further advancements. Multiple federal government agencies have 
mission elements that address national needs related to water. These 
diverse mission needs have engendered a large base of water-related 
data and modeling capabilities that, while useful for their intended 
purposes, are not well integrated to address overarching national 
problems. To address this need, an informal multi-agency group has 
been formed to create and refine a vision for, and initiate action toward 
development of, a national capability on Integrated Hydro-Terrestrial 
Modeling (IHTM) including the related data infrastructure. A recent 
workshop provided a venue to bring together representatives of water- 
related agencies and their scientific partners (including university re
searchers) to initiate and refine the IHTM vision and promote it‘s 
development ( https://dx.doi.org/10.25584/09102020/1659275). It is 
envisioned that more interoperable and integrated data and modeling 
capabilities will not only advance the water-related missions, collec
tively and individually, of the participating agencies, but will also 
enhance national capabilities for prediction and scenario-building in 
cross-cutting areas of high priority, including critical contemporary 
problems such as (1) nutrient loading in the Mississippi Basin, hypoxia 
in the Gulf of Mexico and the Great Lakes, including related sediment 
and contaminant transport; (2) water availability in the West, including 
groundwater depletion in the Southern Ogallala Aquifer and changes to 
water supply driven by changes in precipitation patterns and mountain 
snowpack; and (3) flooding, inundation, debris flow, and other water- 
related hazards during extreme events, including vulnerability of 
contaminated sites to flooding. Such interagency collaborations and 
partnerships, with supporting technical insights and perspectives pro
vided by the research community, is indeed crucial for addressing our 
national and international water challenges. 
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Chu-Agor, M., Muñoz-Carpena, R., Kiker, G., Emanuelsson, A., Linkov, I., 2011. 
Exploring vulnerability of coastal habitats to sea level rise through global sensitivity 
and uncertainty analyses. Environmental Modelling & Software 26, 593–604. 

Clark, M.P., Slater, A.G., Rupp, D.E., Woods, R.A., Vrugt, J.A., Gupta, H.V., Wagener, T., 
Hay, L.E., Clark, M.P., Slater, A.G., Rupp, D.E., Woods, R.A., Vrugt, J.A., Gupta, H.V., 
Wagener, T., Hay, L.E., 2008. Framework for Understanding Structural Errors 
(FUSE): A modular framework to diagnose differences between hydrological models. 
Water Resour. Res 44, 0–02. 

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J. 
E., Gutmann, E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., Gochis, D.J., 
Rasmussen, R.M., 2015a. A unified approach for process-based hydrologic modeling: 
1. Modeling concept. Water Resources Research 51, 2498–2514. 

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J. 
E., Gutmann, E.D., Wood, A.W., Gochis, D.J., Rasmussen, R.M., Tarboton, D.G., 
Mahat, V., Flerchinger, G.N., Marks, D.G., 2015b. A unified approach for process- 
based hydrologic modeling: 2. Model implementation and case studies. Water 
Resources Research 51, 2515–2542. 

Colliander, A., Fisher, J.B., Halverson, G., Merlin, O., Misra, S., Bindlish, R., Jackson, T. 
J., Yueh, S., 2017. Spatial Downscaling of SMAP Soil Moisture Using MODIS Land 
Surface Temperature and NDVI During SMAPVEX15. IEEE Geoscience and Remote 
Sensing Letters 14, 2107–2111. 

Committee, A.S.o.C.E.T., 2000. Artificial neural networks in hydrology. II: Hydrologic 
applications. Journal of Hydrologic Engineering 5, 124–137. 

Conant, B., Robinson, C.E., Hinton, M.J., Russell, H.A.J., 2019. A framework for 
conceptualizing groundwater-surface water interactions and identifying potential 
impacts on water quality, water quantity, and ecosystems. Journal of Hydrology 574, 
609–627. 

Consortium, T.J.G.G.A.E.C.R.K.D.R.E.D.R.A.G.C.V.A.G.E.B.L.X.M.J.J.R.H.R.L.R.C.T.T.M. 
T.N.T.J.M.W.J.W.K.C.S.J.C.W., 2020. WHONDRS Summer 2019 Sampling 
Campaign: Global River Corridor Surface Water FTICR-MS and Stable Isotopes. 

Cornaton, F.J., Park, Y.J., Deleersnijder, E., 2011. On the biases affecting water ages 
inferred from isotopic data. Journal of Hydrology 410, 217–225. 

Crawford, N.H., Linsley, R.E., 1966. Digital simulation in hydrology: Stanford watershed 
model IV. 

Creed, I.F., Beall, F.D., Clair, T.A., Dillon, P.J., Hesslein, R.H., 2008. Predicting export of 
dissolved organic carbon from forested catchments in glaciated landscapes with 
shallow soils. Global Biogeochemical Cycles 22, GB4024. 

Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., 
Ryu, D., Walker, J.P., 2012. Upscaling sparse ground-based soil moisture 
observations for the validation of coarse-resolution satellite soil moisture products. 
Reviews of Geophysics 50. 

Crump, B.C., Hobbie, J.E., 2005. Synchrony and seasonality in bacterioplankton 
communities of two temperate rivers. Limnology and Oceanography 50, 1718–1729. 

Dahm, C.N., Baker, M.A., Moore, D.I., Thibault, J.R., 2003. Coupled biogeochemical and 
hydrological responses of streams and rivers to drought. Freshwater Biology 48, 
1219–1231. 

Dai, H., Chen, X., Ye, M., Song, X., Zachara, J.M., 2017a. A geostatistics-informed 
hierarchical sensitivity analysis method for complex groundwater flow and transport 
modeling. Water Resources Research 53, 4327–4343. 

Dai, H., Ye, M., Walker, A.P., Chen, X., 2017b. A new process sensitivity index to identify 
important system processes under process model and parametric uncertainty. Water 
Resources Research 53, 3476–3490. 

Dai, H., Ye, M., Hu, B.X., Niedoroda, A.W., Zhang, X., Chen, X., Song, X., Niu, J., 2019. 
Hierarchical sensitivity analysis for simulating barrier island geomorphologic 

X. Chen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0022-1694(20)31223-3/h0080
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0080
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0080
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0080
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0090
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0090
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0095
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0095
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0095
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0095
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0095
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0100
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0100
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0110
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0110
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0110
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0115
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0120
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0120
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0120
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0125
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0130
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0130
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0135
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0135
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0140
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0140
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0145
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0145
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0150
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0150
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0150
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0155
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0155
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0170
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0170
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0170
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0170
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0175
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0175
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0175
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0180
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0180
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0185
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0185
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0190
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0190
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0190
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0195
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0195
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0200
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0200
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0200
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0205
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0205
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0205
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0210
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0210
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0215
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0215
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0215
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0220
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0220
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0225
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0225
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0230
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0230
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0230
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0235
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0235
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0240
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0240
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0240
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0245
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0245
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0245
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0245
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0250
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0255
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0255
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0255
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0260
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0260
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0260
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0265
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0265
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0265
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0270
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0270
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0270
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0270
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0275
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0275
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0275
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0280
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0280
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0280
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0290
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0290
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0290
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0290
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0295
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0295
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0295
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0295
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0295
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0300
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0300
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0300
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0300
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0310
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0310
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0310
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0310
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0320
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0320
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0330
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0330
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0330
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0335
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0335
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0335
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0335
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0340
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0340
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0345
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0345
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0345
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0350
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0350
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0350
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0355
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0355
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0355
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0360
http://refhub.elsevier.com/S0022-1694(20)31223-3/h0360


Journal of Hydrology 602 (2021) 125762

17

responses to future storms and sea-level rise. Theoretical and Applied Climatology 
136, 1495–1511. 

Daniel, E.B., Camp, J.V., LeBoeuf, E.J., Penrod, J.R., Dobbins, J.P., Abkowitz, M.D., 
2011. Watershed modeling and its applications: A state-of-the-art review. The Open 
Hydrology Journal 5. 

Danish Hydrologic Institute, 2019. Performance and parallel computing. 
Das, N.N., Mohanty, B.P., 2008. Temporal dynamics of PSR-based soil moisture across 

spatial scales in an agricultural landscape during SMEX02: A wavelet approach. 
Remote Sensing of Environment 112, 522–534. 

Davies, C.L., Surridge, B.W., Gooddy, D.C., 2014. Phosphate oxygen isotopes within 
aquatic ecosystems: Global data synthesis and future research priorities. Science of 
the Total Environment 496, 563–575. 

Dawson, T.E., Simonin, K.A., 2011. The Roles of Stable Isotopes in Forest Hydrology and 
Biogeochemistry, in: Levia, D., D., C.M., Tanaka T. (Eds.), Forest Hydrology and 
Biogeochemistry. Ecological Studies (Analysis and Synthesis). Springer, Dordrecht, 
vol. 216 edition. pp. 137–161. 

Dawson, C.W., Wilby, R., 1998. An artificial neural network approach to rainfall-runoff 
modelling. Hydrological Sciences Journal 43, 47–66. 

Dawson, C.W., Wilby, R.L., 2001. Hydrological modelling using artificial neural 
networks. Progress in Physical Geography: Earth and Environment 25, 80–108. 

Dent, C.L., Grimm, N.B., 1999. Spatial heterogeneity of stream water nutrient 
concentrations over successional time. Ecology 80, 2283–2298. 

Deutsch, B., Voss, M., Fischer, H., 2009. Nitrogen transformation processes in the Elbe 
River: Distinguishing between assimilation and denitrification by means of stable 
isotope ratios in nitrate. Aquatic Sciences 71, 228–237. 

Devia, G.K., Ganasri, B.P., Dwarakish, G.S., 2015. A review on hydrological models. 
Aquatic Procedia 4, 1001–1007. 

DeWitt, T.J., Sih, A., Wilson, D.S., 1998. Costs and limits of phenotypic plasticity. Trends 
in Ecology & Evolution 13, 77–81. 

Doherty, M., Yager, P.L., Moran, M.A., Coles, V.J., Fortunato, C.S., Krusche, A.V., 
Medeiros, P.M., Payet, J.P., Richey, J.E., Satinsky, B.M., 2017. Bacterial 
biogeography across the Amazon river-ocean continuum. Frontiers in Microbiology 
8, 882. 

Duda, P.B., Hummel, P.R., Donigian Jr, A.S., Imhoff, J.C., 2012. BASINS/HSPF: Model 
use, calibration, and validation. Transactions of the ASABE 55, 1523–1547. 

Duncan, J.M., Groffman, P.M., Band, L.E., 2013. Towards closing the watershed nitrogen 
budget: Spatial and temporal scaling of denitrification. Journal of Geophysical 
Research-Biogeosciences 118, 1105–1119. 

Durand, M., Fu, L.L., Lettenmaier, D.P., Alsdorf, D.E., Rodriguez, E., Esteban- 
Fernandez, D., 2010. The Surface Water and Ocean Topography Mission: Observing 
Terrestrial Surface Water and Oceanic Submesoscale Eddies. Proceedings of the IEEE 
98, 766–779. 

Dusek, J., Vogel, T., 2018. Hillslope hydrograph separation: The effects of variable 
isotopic signatures and hydrodynamic mixing in macroporous soil. Journal of 
Hydrology 563, 446–459. 

Dwivedi, D., Mohanty, B.P., Lesikar, B.J., 2013. Estimating Escherichia coli loads in 
streams based on various physical, chemical, and biological factors. Water Resources 
Research 49, 2896–2906. 

Dwivedi, D., Carl, S., Erica, W., Bakytzhan, K., David, M., Evgeny, K., Ethan, C., Glenn, 
H., Lauren, F., Reed, M., 2016a. Testing code interoperability and productivity on 
modeling integrated surface subsurface water flow and biogeochemical cycling in 
the hyporheic zone - IDEAS Use Case 1, Annual joint investigators meeting of the 
Department of Energy’s Office of Biological and Environmental Research (BER)At: 
Potomac, Maryland. 

Dwivedi, D., Mohanty, B.P., Lesikar, B.J., 2016b. Impact of the linked surface water-soil 
water-groundwater system on transport of E. coli in the subsurface. Water, Air, & 
Soil Pollution 227, 351. 

Dwivedi, D., Steefel, I.C., Arora, B., Bisht, G., 2017. Impact of intra-meander hyporheic 
flow on nitrogen cycling. Procedia Earth and Planetary Science 17, 404–407. 

Ebel, B.A., Mirus, B.B., 2014. Disturbance hydrology: Challenges and opportunities. 
Hydrological Processes 28, 5140–5148. 

Elliot, W.J., Miller, I.S., Audin, L., 2010. Cumulative watershed effects of fuel 
management in the western United States. Gen. Tech. Rep. RMRS-GTR-231. Fort 
Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research 
Station. 299 p. 231. 

Elsbury, K.E., Paytan, A., Ostrom, N.E., Kendall, C., Young, M.B., McLaughlin, K., 
Rollog, M.E., Watson, S., 2009. Using oxygen isotopes of phosphate to trace 
phosphorus sources and cycling in Lake Erie. Environmental Science & Technology 
43, 3108–3114. 

Entekhabi, D., Njoku, E.G., O’Neill, P.E., Kellogg, K.H., Crow, W.T., Edelstein, W.N., 
Entin, J.K., Goodman, S.D., Jackson, T.J., Johnson, J., et al., 2010. The soil moisture 
active passive (smap) mission. Proceedings of the IEEE 98, 704–716. 

US EPA, 2019. BASINS 4.5 (Better Assessment Science Integrating point & Non-point 
Sources) Modeling Framework. 
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